簡易檢索 / 詳目顯示

研究生: 許忻瑋
Hsu, Hsin-Wei
論文名稱: 正方管中之紊流拉板-壓力驅動流場
Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct
指導教授: 林昭安
Lin, Chao-An
口試委員: 崔燕勇
曾于恆
許文震
牛仰堯
王安邦
黃楓南
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 180
中文關鍵詞: 紊流拉板-壓力驅動流拉板驅動流大渦數值直接數值
外文關鍵詞: turbulent flow, Couette-Poiseuille flow, Couette flow, Large eddy simulation, Direct numerical simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Present study employed the large eddy simulation and direct numerical simulation techniques to simulate the turbulentCouette-Poiseuille and Couette flows inside a square duct. The numerical framework consists of a finite-volume method with a staggered-grid arrangement of dependent variables. Spatial derivatives are approximated using second-order centered differencing, and a fractional-step method is used for temporal integration. To relieve the computational load, the parallelization of the code together with the direct fast Fourier transform solver is employed for pressure Poisson solver.

    Turbulent Couette-Poiseuille and Couette flows at different mean strain rates, (velocity ratio of Couette wall to bulk flow, r= 0.6~3.26), in a square duct at a bulk Reynolds number~10,000 are investigated by large eddy simulation. Simulations are conducted with 128x128x128 grids and validated by computing the Poiseuille flow. Secondary flow near the Couette wall shows a gradual change of vortex size and position as the moving wall velocity increased, where the two clockwise rotating vortices gradually merge in tandem with speed of the moving wall and form a large clockwise vortex. A linear relation is observed to exist between the angle of the two vortices and the parameter r, and a change in slope occurs at r~1.2. Also, together with a small counter-clockwise corner vortex, this vortex pattern is similar to that observed in the corner region of the duct flow with a free surface. The change of the vortex patterns also influences the dominant transport terms in the streamwise vorticty transport equation. Near the moving wall due to the reduction of the streamwise velocity fluctuation at the moving wall, turbulence structure gradually moves towards a rod-like axi-symmetric turbulence, and as r increases beyond 1.2, turbulence reverts to the disk-like structure.

    Further study investigates the four different cases (plane Poiseuille (PP), duct Poiseuille (DP), plane Couette (PC), duct Couette (DC)) at the same friction Reynolds number and the turbulent Couette flows at different friction Reynolds numbers (including Retau~257, 360 and 600) inside a square duct using a direct numerical simulation. The influence of side wall and Couette wall on the turbulence structures and energy transport inside a square duct are examined. For the side wall effect along the wall bisector, x/D=0.5, a variation between the duct Couette flow and its plane counterpart is attributed to the emergence of Reynolds
    stress <u'w'>. This factor yields an antisymmetric velocity distribution and induces a stronger sweeping process carrying with considerable mean streamwise momentum energy to counterbalance the secondary motion caused by the side wall. With respect to the Couette wall effect, a substantial change is observed from the secondary flow pattern. Two clockwise vortices merge together close
    to the moving wall because of a reduction in the corner effect caused by the Couette strain rate. Further, the fast moving wall, together with nearby quiescent fluid, produces the formation of another small clockwise vortex near the corner. As the Couette velocity is gradually increased, an enhanced streamwise momentum is observed, which is associated with a stronger sweeping motion that is transported towards the stationary wall. This makes the turbulence intensity levels approach that of the plane Couette flow. In the corresponding region, the constrained energy results in an increase in the spanwise turbulence intensity.


    Abstract------------------------------------------iii Contents------------------------------------------xi List of Figures-----------------------------------xiv List of Tables------------------------------------xviii 1 Introduction 1.1 Introduction--------------------------------1 1.2 Literature Survey---------------------------3 1.3 Objective of Dissertation-------------------10 1.4 Outlines of Dissertation--------------------11 2 Mathematical Models 2.1 Introduction--------------------------------13 2.2 Governing Equations for Large Eddy Simulation 14 2.3 Sub-grid Scale Modeling---------------------15 2.4 Closure-------------------------------------20 3 Numerical Solution 3.1 Introduction--------------------------------21 3.2 Grid Generation-----------------------------22 3.3 Discretization of the Tranport Equation-----23 3.4 The Pressure Poisson Equation---------------27 3.5 Boundary Condition--------------------------34 3.6 Closure-------------------------------------35 4 Preliminary Tests of the Prediction Procedure 4.1 Introduction--------------------------------39 4.2 Code Validation-----------------------------41 4.3 Turbulent Poiseuille flow-------------------42 4.4 Algorithm Turning and Parallel Efficiency for Poisson solver------------------------------51 4.5 Closure-------------------------------------66 5 Large Eddy Simulations of Turbulent Couette-Poiseuille and Couette Flows Inside a Square Duct 5.1 Introduction--------------------------------76 5.2 Description of the Flow conditions----------78 5.3 Validation of Turbulent Couette-Poiseuille and Couette Flows---------------------------------------79 5.4 Presentation and Discussion of the Results--81 5.5 Closure-------------------------------------89 6 Direct Numerical Simulation of Turbulent Couette Flows Inside a Sqare duct 6.1 Introduction -------------------------------106 6.2 Description of the Flow Conditions----------109 6.3 Validation of the Turbulent Couette Flows---110 6.4 Presentation and Discussion of the Results--113 6.5 Closure-------------------------------------128 7 Conclusions and Recommendations for Further Work 7.1 Preliminary Remarks-------------------------167 7.2 Conclusions---------------------------------168 7.3 Recommendations for Further Work------------171

    1. L. Prandtl, Uber die ausgebildete turbulenz, Fur Tech.
    Mech., Zurich,[English translation NACA Tech. Memo. 435,
    62], 1926.
    2. S. J. Kline and M. V. Morkovin and D. J. Cockrell,
    Computation of turbulent Boundary layer--AFOSR-IFP
    Standford Conference, Proc. 1968 Conf., 1, 1968.
    3. W. P. Jones and B. E. Launder, The predition of
    Laminarization with a Two-Equation model of turbulence,
    Int. J. Heat Mass Transfer, 15:301-314, 1972
    4. C. G. Speziale, On nonlinear k-e and k-l models of
    turbulence, J. Fluid Mech., 178:459-475, 1987.
    5. T. H. Chiu, L. K. Yeh, and C. A. Lin. Explicit algebraic
    stress modelling of homogeneous and inhomogeneous flows.
    Int. J. Numer. Methods Fluids, 49:817-835, 2005.
    6. T. J. Craft, B. E. Launder, and K. Suga. Development and
    application of a cubic eddy-viscosity model of
    turbulence. Int. J. Heat Fluid Flow, 17:108–115, 1996.
    7. B. E. Launder and S. P. Li. On the elimination of wall-
    topography parameters from second moment closure. Phys.
    Fluids, 6:990–1006, 1994.
    8. J. M. Tsao and C. A. Lin. Reynolds stress modelling of
    jet and swirl interaction inside a gas turbine
    combustor. Int. J. Numer. Methods Fluids, 29:451–464,
    1999.
    9. J. Smagorinsky. General circulation experiments with the
    primitive equations. I. the basic experiment. In Mon.
    Weather Rev., volume 91 of 3, pages 99–164. 1963.
    10. M. Germano, U. Piomelli, P. Moin, and W. Cabot. A
    dynamic subgrid-scale eddy viscosity model. Phys.
    Fluids, 3:1760–1765, 1991.
    11. R. K. Madabhushi and S. P. Vanka. Large eddy simulation
    of turbulencedriven secondary flow in a square duct.
    Phys. Fluids A, 3:2734–2745, 1991.
    12. W. Lo and C. A. Lin. Mean and turbulence structures of
    couette-poiseuille flows at different mean shear rates
    in a square duct. Phys. Fluids, 18:068103, 2006.
    13. J. W. Deardorff. A numerical study of three-dimensional
    turbulent channel flow at large reynolds numbers. J.
    Fluid Mech., 41:453–480, 1970.
    14. P. Moin, K. Squires, W. Cabot, and S. Lee. A dynamic
    subgridscale model for compressible turbulence and
    scalar transport. Phys. Fluids, 3:2746–2757, 1991.
    15. D. K. Lilly. A proposed modification of the germano
    subgrid-scale closure method. Phys. Fluids, 4:633–635,
    1992.
    16. Y. Zang, R. L. Street, and J. R. Koseff. A dynamic
    mixed subgrid?scale model and its application to
    turbulent recirculating flows. Phys. Fluids, 5:3186–
    3196, 1993.
    17. S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll. A
    dynamic localization model for large-eddy simulation of
    turbulent flows. J. Fluid Mech., 286:229–255, 1995.
    18. U. Piomelli and J. Liu. Large eddy simulation of
    rotating channel flows using a localized dynamic model.
    Phys. Fluids, 7:839–848, 1995.
    19. A. J. Chorin. Numerical solution of the navier-stokes
    equations. Math Comput, 22:745–762, 1968.
    20. J. Kim and P. Moin. Application of a fractional-step
    method to incompressible navior-stokes equations. J.
    Comput Phys., 177:133–166, 1987.
    21. F. X. Trias, M. Soria, C. D. P´erez − Segarra, and A.
    Oliva. A direct schurfourier decomposition for the
    efficient solution of high-order poisson equations
    on loosely coupled parallel computers. Numer Linear
    Algebra Appl., 13:303–326, 2006.
    22. A. Gorobets, F. X. Trias, M. Soria, and A. Oliva. A
    scalable parallel poisson solver for three-dimensional
    problems with one periodic direction. Computer Fluids,
    39:525–538, 2009.
    23. B. Smith, P. Bjørstad, and W. Gropp. Parallel
    multilevel methods for elliptic partial differential
    equations. In Domain decomposition. Cambridge University
    Press, 1996.
    24. K. M. Singh and J. J. J. R. Williams. Application of
    the additive schwarz method to large scale poisson
    problem. Commun Numer Methods Eng, 20:193–205, 2004.
    25. S. A. Nadeem and P. K. Jimack. Parallel implementation
    of an optimal twolevel additive schwarz preconditioner
    for the 3-d finite element soltion of elliptic partial
    differential equations. Int, J. Numer Mech. Fluids,
    40:1571–1579, 2002.
    26. R. F. Blackwelder and H. Eckelmann. Streamwise vortices
    associated with the bursting phenomenon. J. Fluid
    Mech., 94:577–594, 1979.
    27. J. Kim. On the structue of wall-bounded turbulent
    flows. Phys. Fluids, 26:2088–2097, 1983.
    28. E. R. Corino and Robert S. Brodkey. A visual
    investigation of the wall region in turbulent flow. J.
    Fluid Mech., 37:1–30, 1969.
    29. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W.
    Rundstadler. The structure of turbulent boundary
    layers. J. Fluid Mech., 30:741–773, 1967.
    30. H. T. kim, S.J. Kline, and W. C. Reynolds. The
    production of turbulence near a smooth wall in a
    turbulent boundary layer. J. Fluid Mech., 50:133–160,
    1971.
    31. J. M. Wallace, H. Eckelmann, and R. S. Brodkey. The
    wall region in turbulent shear flow. J. Fluid Mech.,
    54:39–48, 1972.
    32. W. W. Willmarth and S. S. LU. Structure of the reynolds
    stress near the wall. J. Fluid Mech., 55:65–92, 1972.
    33. A. G. Kravchenko, H. Choi, and P. Moin. On the relation
    of near-wall streamwise vortices to wall skin friction
    in turbulent boundary layers. Phys Fluids, 6:634–641,
    1994.
    34. P. Oriandi and J. Jim´enez. On the generation of
    turbulent wall friction. Phys Fluids, 6:634–641, 1994.
    35. J. Kim, P. Moin, and R. Moser. Turbulence statistics in
    fully developed channel flow at low reynolds number. J.
    Fluid Mech., 117:133–166, 1987.
    36. K. Nakabayashi, O. Kitoh, and Y. Katoh. Similarity laws
    of velocity profiles and turbulence characteristics of
    couette-poiseuille turbulent flows. J. Fluid Mech.,
    507:43–69, 2004.
    37. K. H. Bech, N. Tillmark, P. H. Alfredsson, and H. I.
    Andersson. An investigation of turbulent plane couette
    flow at low reynolds numbers. J. Fluid Mech., 286:291–
    325, 1995.
    38. O. Kitoh, K. Nakabyashi, and F. Nishimura. Experimental
    study on mean velocity and turbulence characteristics
    of plane couette flow: low-reynoldsnumber effects and
    large longitudinal vorticial structure. J. Fluid Mech.,
    539:199–227, 2005.
    39. A. Kuroda, N. Kasagi, and M. Hirata. Direct numerical
    simulation of turbulent plane couette-poiseuille flows:
    Effect of mean shear rate on the near wall turbulence
    structures. In Proc. Turbulent Shear Flows, page 241.
    pringer-Verlag, Berlin, 1993.
    40. E. M. Thurlow and J. C. Klewicki. Experimental study of
    turbulent poiseuillecouette flow. Phys. Fluids, 4:865–
    875, 2000.
    41. R. Kristoffersen, K. H. Bech, and H. I. Andersson.
    Numerical study of turbbulent plane couette flow at low
    reynolds number. Applied Scienti
    c Research, 51:337–
    343, 1993.
    42. J. Komminaho, A. Lundbladh, and A. Johansson. Very
    large structures in plane turbulent couette flow. J.
    Fluid Mech., 320:259–285, 1996.
    43. H. Kawamura, H. Abe, and K. Shongai. Dns of turbulent
    and heat transport in a channel flow with different
    reynolds and prandtl numbers and boundary conditions.
    In 3rd Int. Symp. on Turbulence, Heat and Mass
    Transfer., 2000.
    44. A. Huser and S. Biringen. Direct numerical simulation
    of turbulent flow in a square duct. J. Fluid Mech.,
    257:65–95, 1993.
    45. S. Gavrilakis. Numerical simulation of low-reynolds-
    number turbulent flow through a straight square duct.
    J. Fluid Mech., 244:101–129, 1992.
    46. B. Gessner and J. B. Jones. On some aspects of fully-
    developed turbulent flow in rectangular channels. J.
    Fluid Mech., 23:689–713, 1965.
    47. H. J. Perkins. The formation of streamwise vorticity in
    turbulent flow. J. Fluid Mech., 44:721–740, 1970.
    48. H. Iacovides and B. E. Launder. Computational fluid
    dynamics applied to internal gas-turbine blade cooling:
    A review. International J. of Heat and Fluid Flow,
    16:454–470, 1995.
    49. R. Brogolia, A. Pascarelli, and U. Piomelli. Large eddy
    simulations of ducts with a free surface. J. Fluid
    Mech., 484:223–253, 2003.
    50. M. Salinas V´azquez and O. M´etais. Large eddy
    simulation of the turbulent flow through a heated
    square duct. J. Fluid Mech., 453:201–238, 2002.
    51. J. Pallares and L. Davidson. Large eddy simulations of
    turbulent heat transfer in stationary and rotating
    square ducts. Phys. Fluids, 14:2804–2816, 2002.
    52. M. Uhlmann, A. Pinelli, G. Kawahara, and A. Sekimoto.
    Marginally turbulent flow in a square duct. J. Fluid
    Mech., 588:153–162, 2007.
    53. L. M. Grega, T.Wey, R. I. Leighton, and J. C. Neves.
    Turbulent mixed-boundary flow in a corner formed by a
    solid wall and a free-surface. J. Fluid Mech., 294:17–
    46, 1995.
    54. C. B. Hwang and C. A. Lin. Improved low-reynolds-number
    k-e model based on direct numerical simulation data.
    AIAA J., 36:38–43, 1998.
    55. C. B. Hwang and C. A. Lin. Low-reynolds-number k-e
    modeling of nonstationary solid boundary flows. AIAA
    J., 41:168–175, 2003.
    56. W. Lo and C. A. Lin. Prediction of secondary flow
    structure in turbulent couettepoiseuille flows inside a
    square duct. In Proc. 2006 Parallel Computational Fluid
    Dynamics, pages 173–180. Elsevier S.V., 2007.
    57. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
    Knepley, and L. C. Mclnnes. Petsc web page.
    page:http://www.mcs.anl.gov/petsc, 2010.
    58. H. Choi and P. Moin. Effects of the computational time
    step on numerical solutions of turbulent flow. J.
    Comput Phys., 113:1–4, 1994.
    59. Y. Saad. In Iterative methods for sparse linear system.
    Second ed. Philadelphia: SIAM, 2004.
    60. C. E. Pearson. A computational method for time
    dependent two dimensional incompressible viscous flow
    problems. Technical Report NO. SRRC-RR-64-17,
    Sudbury (MA): Sperry Rand Research Center, 1964.
    61. R. Moser, J. Kim, and N. Mansour. Direct numerical
    simulation of turbulent channel flow up to retau=590.
    Phys. Fluids, 11:943–945, 1999.
    62. H. Abe, H. Kawamura, and Y. Matsuo. Direct numerical
    simulation of a fully developed turbulent channel flow
    with respect to the reynolds number dependence. J.
    Fluids Engineering-Transacations of ASME, 123:382–393,
    2001.
    63. K. Iwamoto, Y. Suzuki, and N. Kasagi. Reynolds number
    effect on wall turbulence: toward effective feedback
    control. International J. of Heat and Fluid Flow,
    23:678–689, 2002.
    64. L. C. Dutto. The effect of ordering on preconditioned
    gmres algorithm for solving the compressible navier-
    stokes equations. Int. J. Numer. Methods Eng.,
    36:457–497, 1993.
    65. A. George, W.P. Tang, and Y.D. Wu. Multi-level one-way
    dissection factorization. SIAM J. Matrix Anal. appl.,
    22:752–771, 2000.
    66. M. Benzi. Preconditioning techniques for large linear
    systems: a survey. J. Comput. Phys., 182:418–477, 2002.
    67. E. Cuthill. Several strategies for reducing the
    bandwidth of matrices. pages 157–169, 1972.
    68. I.S. Duff and G.A. Meurant. The effect of ordering on
    preconditioned conjugate gradients. BIT, 29:635–657,
    1989.
    69. M. Benzi, D.B. Szyld, and A.V. Duin. Orderings for
    incomplete factorization preconditioning of
    nonsymmetric problems. SIAM J. Sci. Comput., 20:1652–
    1670, 1999.
    70. R. Bridson and W.P. Tang. A structural diagnosis of
    some ic orderings. SIAM J. Sci. Comput., 22:1527–1532,
    2000.
    71. A. George. Nested dissection of a regular finite
    element mesh. SIAM J. Numer. Anal., 10:345–363, 1973.
    72. E. Ng. On one-way dissection schemes. University of
    Waterloo, 1979.
    73. A. George and J.W.H. Liu. The evolution of the minimum
    degree ordering algorithm. SIAM Review, 32:1–19, 1989.
    74. J. L. Lumley. Computational modeling of turbulent
    flows. Adv. Appl. Mech., 18:123–176, 1978.
    75. R. A. Antonia, H. Q. Danh, and A. Prabhu. Response of a
    turbulent boundary layer to a step change in surface
    heat flux. J. Fluid Mech., 80:153–177, 1977.
    76. M. J. Lee and W. C. Reynolds. Numerical experiments on
    the structure of homogeneous turbulence. Technical
    report, Stanford University, Thermoscience Division,
    1985.
    77. M. M. M. EL Telbany and A. J. Reynolds. Turbulence in
    plane channel flows. J. Fluid Mech., 111:283–318, 1981.
    78. P. Moin and J. Kim. Numerical investigation of
    turbulent channel flow. J. Fluid Mech., 118:341–377,
    1982.
    79. J. A. C. Humphrey, J. H. Whitelaw, and G. Yee.
    Turbulent flow in a square duct with strong curvature.
    J. Fluid Mech., 103:443–463, 1981.
    80. Lionel Temmerman, M. A. Leschziner, C. P. Mellen, and
    J. Fr¨ohlich. Investigation of wall-function
    approximations and subgrid-scale models in large
    eddy simulation of separated flow in a channel with
    streamwise periodic constrictions. Int. J. Heat and
    Fluid flow, 24:157–180, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE