研究生: |
張宏豪 |
---|---|
論文名稱: |
Realized GARCH模型於風險值衡量之應用 Application of Realized GARCH model in estimation of Value at Risk |
指導教授: | 周若珍 |
口試委員: |
韓傳祥
胡毓彬 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | Realized GARCH模型 、風險值 、預期短缺 、極值理論 、波動率預測 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將融合日收益及實現波動率測度 (realized volatility measure) 的 Real-
ized GARCH 模型應用於風險值及預期短缺的估計。 除了直接使用一般模型的常態
假設去計算這些風險測度, 本文也採用 McNeil and Frey(2000) 的概念將極值理論
(extreme value theory) 與之融合, 獲得厚尾分配下的風險測度估計, 並比較不同分
配假設下之結果。 實證上, 以標準普爾100(S&P 100) 指數的高頻資料作為研究對象,
並加入一般基於日收益的 GARCH 模型以及單純使用實現波動率測度的 MEM 模型
作風險值預測能力之比較。 實證結果顯示, Realized GARCH 模型的風險值預測表現
優於其他的波動率模型。
Andersen, T., Bollerslev, T., Diebold, F., and Labys, P.(2001), ”Modeling and fore-
casting realized volatility”, Econometrica, 71, 579-625.
Andersen, T., Bollerslev, T. and Diebold, F.(2004), ”Parametric and nonparametric
volatility measurement”, In Hansen, L. and Ait-Sahalia, Y. (Eds):Handbook of
Financial Econometrics, North-Holland, Amsterdam.
Andersen, T., and Luca Benzoni(2009), ”Realized Volatility”, In
Andersen, T.,
Richard A., Kreiss J. and Mikosch T. (Eds):Handbook of Financial Time Series,
Springer-Verlag, 555-575.
Angelidis, T., Degiannakis, S. (2007), ”Backtesting VaR Models: An Expected
Shortfall Approach”, University of Crete, Department of Economics, Working
Paper No.0701.
Artzner, P., Delbaen, F., Ebe,r J.M., Heath, D. (1999), ”Coherent measures of risk”,
Mathematical Finance,Vol. 9, No 3, 203-228.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2004), ”Reg-
ular and Modifed Kernel-Based Estimators of Integrated Variance: TheCase
With Independent Noise”, Working paper, Stanford University, Dept. of Eco-
nomics.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N. (2009), ”Realised
kernels in practice: Trades and quotes”, Econometrics Journal, 12, 1-33.
Bollerslev, T. (1986), ”Generalized autoregressive conditional heteroskedasticity”,
Journal of Econometrics, 31, 307-327.
Christoffersen, P. (1998), ”Evaluating interval forecasts”, International Economic
Review, 39, 841-862.
Danielsson, J., and de Vries, C. (2000), ”Value-at-Risk and extreme returns”, An-
nales d’Economie et de Statistique, 60, 239-270.
Davison, A., and Smith, R. (1990), ”Models for exceednces over high thresholds(with
discussion)”, Journal of the Royal Statistical Society Series B, 52, 393-442.
Embrechts, P., Resnick, S., Samorodnitsky, G. (1999), ”Extreme value theory as a
risk management tool”, North American Actuarial Journal 3 (2), 30-41.
Engel, J., and Gizycki, M. (1999), ”Conservatism, accuracy and efficiency: Compar-
ing Value-at-Risk models”, Working paper 2,Australian Prudential Regulation
Authority
Engle, R. (1982), ”Autoregressive conditional heteroskedasticity with estimates of
the variance of U.K. inflation”, Econometrica, 45, 987-1007.
Engle, R. (2002), ”New frontiers for ARCH models”,Journal of Applied Enconomet-
rics, 17, 425-446.
Engle, R., and Gallo, G. (2006), ”A multiple indicators model for volatility using
intra-daily data”, Journal of Econometrics, 131, 3-27.
Engle, R., and Manganelli, S. (2004), ”CAViaR: Conditional Autoregressive Value
at Risk by Regression Quantiles”, Journal of Business & Economic Statistics,
22, 367-381.
Forsberg, L., and Bollerslev, T. (2002), ”Bridging the gab between the distribution
of realized (ECU) volatility and ARCH modeling (of the EURO): The GARCH-
NIG model”, Journal of Applied Econometrics, 17(5), 535-548.
Francq, C., and Zakoian, J. (2010), Garch models: Structure, statistical inference
and financial applications ,Chichester, UK: John Wiley.
Giot, P., and Laurent, S. (2004), ”Modeling daily Value-at-Risk using realized
volatility and ARCH type models”, Journal of Empirical Finance, 11, 379-398.
Goldie, C., and Smith, R. (1987), ”Slow variation with remainder: Theory and
applications”, Quarterly Journal of Mathematics, 38, 45-71.
Hansen, P., Huang, Z., and Shek, H. (2010), ”Realized GARCH: A Complete Model
of Returns and Realized Measures of Volatility”, Working paper, Stanford Uni-
versity.
Hartz, C., Mittnik, S., and Paolella, M. (2006), ”Accurate Value-at-Risk forecasting
based on the normal-GARCH model”, Computational Statistics & Data Anal-
ysis, 51, 2295-2312.
Hill, B.(1975), ”A simple general approach to inference about the tail of a distribu-
tion”, The Annals of Statistics, 3, 1163-1174.
Huisman, R., Koedijk, K., and Pownall, R. (1998), ”VaR-x: Fat tails in financial
risk management”, Journal of Risk, 1, 47-62.
Jenkinson, A. (1955), ”The frequency distribution of the annual maximum (or min-
imum) of meteorological elements”, Quarterly Journal of the Royal Meteorolog-
ical Society, 81, 158-171.
Jorion, P. (2007), Value at Risk: The New Benchmark for Managing Financial Risk,
3rd ed, McGraw-Hill, Chicago.
Kupiec, P. (1995), ”Techniques for verifying the accuracy of risk measurement mod-
els”, Journal of Derivatives, 3, 73-84.
McNeil, A., and Frey, R. (2000), ”Estimation of tail-related risk measures for het-
eroscedastic financial time series: An extreme value approach”, Journal of Em-
pirical Finance, 7, 271-300.
Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005), ”A Tale of Two Time Scales:
Determining Integrated Volatility With Noisy High-Frequency Data”, Journal
of the American Statistical Association, 100, 1394-1411.
Chen, Y.R. (2008), ”風險值衡量: 實現變幅的應用”, 國立交通大學經營管理研究所碩士
論文.