研究生: |
徐建華 Hsu, Chien-Hua |
---|---|
論文名稱: |
應用雷射剝蝕感應耦合電漿質譜儀及超音波影像系統探討以薄膜處理廢水的阻塞問題 Using LA-ICP-MS and ultrasound imaging system to investigate fouling of membrane in wastewater treatment |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
張怡怡
Chang, E-E. 蔣本基 Chiang, Pen-Chi 林俊德 Lin, Justin Chun-Te |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 薄膜 、錯合物 、金屬 、雷射剝蝕感應耦合電漿質譜儀 |
外文關鍵詞: | membrane, complex, metal, laser ablation inductively coupled plasma mass spectrometer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,化學工業所產生的重金屬是汙染環境水體主要來源,但現今廢水處理技術無法有效將重金屬物質清除乾淨。此外,如離子交換和溶劑萃取的預處理過程會產生有機物的二次性污染,因此本研究使用薄膜過濾技術,進行去除廢水中微量重金屬物質(Co)與螯合劑(APDC)與所形成錯合物的方法。本研究將探討不同追蹤物的溶質系統(Co、Sr及Cs)對APDC的影響,研究結果可發現在不同單溶質系統中,APDC的選擇性大小為Co>>Sr>Cs。LA-ICP-MS結合α-step輪廓分析儀驗證可應用在薄膜追蹤有機物的影像分佈情形。研究結果中利用Hermia模式進行分析阻塞機制,並以Co作為追蹤劑,探討不同有機物(APDC、LAS、SDS及CTAB)與Co元素的錯合能力,並搭配LA-ICP-MS去分析薄膜表面上有機物的影像分佈情形,其結果顯示以APDC-Co中的S和Co元素分佈最相似(R2= 0.9402),代表有很強的結合能力。而為了將薄膜回收再利用,研究中亦探討使用不同化學藥劑(純水、2% HCl及1M NaOH)去除薄膜阻塞物,並搭配超音波影像系統觀察薄膜清洗後表面粗糙程度。
In recent years, industrial wastewater is a major source of metal polluting in the environment. However, there is still no effective way to remove heavy metal in the wastewater. In addition, pretreatment processes such as ion exchange and solvent extraction suffer from the secondary pollution caused by the spent resins/solvent. In this study, membrane filtration techniques to remove trace metals and spent resins/solvent in the simulated wastewater Co, Sr and Cs are selected to evaluate the chelating ability of APDC. The results show that the selectivity of APDC is in the following order: Co >> Sr> Cs. Through the LA-ICP-MS and α-step profilometer measurement, the obtained results are consistent with fouling mechanisms based on Hermia model and reveal that the chelating complex could be used as a tracer to demonstrate the phenomenon of organic fouling in the membrane filteration.. Thus Co is chosen to explore the complexation ability of different organics (APDC, LAS, SDS and CTAB) as well as a tracer to present the spatial distribution of organics on the membrane surface. The results show that the distribution of S and Co in the APDC-Co sample has high correlation (R2 = 0.9402) and reveals strong affinity between APDC and Co. The ultrasonic imaging system is also conducted to investigate the depth/ roughness of membrane surface before and after the foulant removing by different chemical agents (water, 2% HCl and 1M NaOH)).
1.Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y.-T., Liquid Radioactive Wastes
Treatment: A Review. Water 2011, 3, (4), 551-565.
2. Zakrzewska-Trznadel, G.; Harasimowicz, M.; Chmielewski, A. G., Membrane
processes in nuclear technology-application for liquid radioactive waste treatment.
Sep. Purif. Technol 2001, 22-23.
3. Arnal, J.; Sancho, M.; Verdú, G.; Campayo, J.; Gozálvez, J., Treatment of 137Cs
liquid wastes by reverse osmosis Part II. Real application Desalination 2003, 154,
35-42.
4.Cancino-Madariaga, B.; Aguirre, J., Combination treatment of corn starch
wastewater by sedimentation, microfiltration and reverse osmosis. Desalination
2011, 279, (1-3), 285-290.
5.Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis.
Desalination 2003, 157, 403-407.
6. Ambashta, R. D.; Sillanpaa, M. E., Membrane purification in radioactive waste
management: a short review. Journal of environmental radioactivity 2012, 105,
76-84.
7.Bernata, X.; Fortuny, A.; Stüber, F.; Bengoa, C.; Fabregat, A.; Font, J., Recovery of
iron (III) from aqueous streams by ultrafiltration. Desalination 2008, 221, (1-3),
413-418.
8. Szöke, S.; Pátzay, G.; Weiser, L., Cobalt(III) EDTA complex removal from aqueous
alkaline borate solutions by nanofiltration. Desalination 2005, 175, (2), 179-185.
9. Yong, G.; Jun, Z.; Guanghui, Z.; Dong, Z.; Weiwen, C.; Guoqi, Y.; Xuejun, L.;
Bangzhong, M.; Junhui, Z.; Ping, G., Treatment of the wastewater containing
low-level 241Am using flocculation-microfiltration process. Separation and
Purification Technology 2004, 40, (2), 183-189.
10. Z.T., G.; H., M., Removal of radionuclides by membrane permeation combined
with complexation. Desalination 2002, 144, 207-212.
11. Z.T., G.; H., M., Removal of radionuclides by membrane permeation combined
with complexation. Desalination 2002, 144, 207-212.
12. Saeki, D.; Nagao, S.; Sawada, I.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H.,
Development of antibacterial polyamide reverse osmosis membrane modified with
a covalently immobilized enzyme. Journal of Membrane Science 2013, 428,
403-409.
13. Sim, S. T. V.; Chong, T. H.; Krantz, W. B.; Fane, A. G., Monitoring of colloidal
fouling and its associated metastability using Ultrasonic Time Domain
Reflectometry. Journal of Membrane Science 2012, 401-402, 241-253.
14. Osmonics, G., The Filtration Spectrum.GE Osmonics. 1996.
15.Cheryan, M., Ultra-filtration and Microfiltration Handbook. 1998.
16.Gutman, R. G., Membrane Filtration: The Technology of Pressure-Driven
Crossflow Processes. Crossflow Processes 1987.
17. Hayama, M.; Yamamoto, K.; Kohori, F.; Sakai, K., How polysulfone dialysis
membranes containing polyvinylpyrrolidone achieve excellent biocompatibility,J. Membr. Sci. 2004, 234, 41-49.
18. Dunweg, G.; Lother, S.; Wolfgang, A., Dialysis membrane made of cellulose
Acetate. US Patent 5 1995, 403, 485.
19. Ferjani, E.; Lajimi, R. H.; Deratani, A., Bulk and surface modification of cellulose
diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and
characterization. Desalination 2002, 146, 325-330.
20. Qin, J.-J.; Li, Y.; Lee, L.-S.; Lee, H., Cellulose acetate hollow fiber ultrafiltration
membranes made from CA/PVP 360 K/NMP/water. Journal of Membrane Science
2003, 218, (1-2), 173-183.
21. Qin, J.-J.; Oo, M. H.; Cao, Y.-M.; Lee, L.-S., Development of a LCST membrane
forming system for cellulose acetate ultrafiltration hollow fiber. Separation and
Purification Technology 2005, 42, (3), 291-295.
22. Zularisam, A. W.; Ismail, A. F.; Salim, M. R.; Sakinah, M.; Ozaki, H., The effects
of natural organic matter (NOM) fractions on fouling characteristics and flux
recovery of ultrafiltration membranes. Desalination 2007, 212, (1-3), 191-208.
23. Nowak, K. M.; Kowalska, I.; Korbutowicz, M. K., Ultrafiltration of SDS solutions
using polymeric membranes. Desalination 2005, 184, 415-422.
24. Ramírez, J. A. L.; Oviedo, M. D. C.; Alonso, J. M. Q., Comparative studies of
reverse osmosis membranes for wastewater reclamation. Desalination 2006, 191,
137-147.
25. Boricha, A. G.; Murthy, Z. V. P., Preparation of N,O-carboxymethyl
chitosan/cellulose acetate blend nanofiltration membrane and testing its
performance in treating industrial wastewater. Chemical Engineering Journal
2010, 157, (2-3), 393-400.
26. Lawrence Arockiasamy, D. A.; Nagendran, K. H.; Shobana, D. M., Preparation
and characterization of cellulose acetate/aminated polysulfone blend ultrafiltration
membranes and their application studies. Sep. Sci. Technol. 2009, 44, 398-421.
27. Brousse, C. L.; Chapurlat, R.; Quentin, J. P., New membranes for reverse osmosis.
I. Characteristics of the base polymer: sulphonated polysulphones. Desalination
1976, 181, 137-153.
28. Robert, J. P., Composite reverse osmosis and nanofiltration membranes. Journal
of Membrane Science 1993, 83, 81-150.
29. Dongliang Wang, K. L., W.K. Teo, Preparation and characterization of
polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane
Science 1999, 163, 211-220.
30. Ma, W. Z.; Zhang, J.; Chen, S. J.; Wang, X. L., Beta-phase of poly(vinylidene
fluoride) formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend
from solutions. Appl. Surf. Sci. 2008, 254, 5635-5642.
31. Lin, D. J.; Chang, C. L.; Chang, C. L.; Chen, T. C.; Cheng, L. P., Fine structure of
poly(vinylidene fluoride) membranes prepared by phase inversion from a
water/N-Methyl-2-pyrollidone/poly(vinylidene fluoride) system. Fine structure of
PVDF membranes 2003.
32. Ma, W.; Zhang, J.; Chen, S.; Wang, X., β-Phase of poly(vinylidene fluoride)
formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend from
solutions. Applied Surface Science 2008, 254, (17), 5635-5642.
33. Xiao, Y.; Liu, X. D.; Wang, D. X.; Lin, Y. K.; Han, Y. P.; Wang, X. L., Feasibility
of using an innovative PVDF MF membrane prior to RO for reuse of a secondary
municipal effluent. Desalination 2013, 311, 16-23.
34. Chen, G.; Lin, Y.; Wang, X., Formation of microporous membrane of isotactic
polypropylene in dibutyl phthalate-soybean oil via thermally induced phase
separation. Journal of Applied Polymer Science 2007, 105, (4), 2000-2007.
35. Cui, Z.-Y.; Du, C.-H.; Xu, Y.-Y.; Ji, G.-L.; Zhu, B.-K., Preparation of porous PVdF
membrane via thermally induced phase separation using sulfolane. Journal of
Applied Polymer Science 2008, 108, (1), 272-280.
36. Gu, M.; Zhang, J.; Wang, X.; Ma, W., Crystallization behavior of PVDF in
PVDF-DMP system via thermally induced phase separation. Journal of Applied
Polymer Science 2006, 102, (4), 3714-3719.
37. Gu, M.; Zhang, J.; Wang, X.; Tao, H.; Ge, L., Formation of poly(vinylidene
fluoride) (PVDF) membranes via thermally induced phase separation.
Desalination 2006, 192, (1-3), 160-167.
38. Li, X.; Lu, X., Morphology of polyvinylidene fluoride and its blend in thermally
induced phase separation process. Journal of Applied Polymer Science 2006, 101,
(5), 2944-2952.
39. Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S., Microporus membrane formation via
thermally induced phase separation. I.Solid-liquid phase separation. Journal o
Membrane Science 1990, 52, 239-261.
40. Bick, A.; Oro, G., Assessing the linkage between feed water quality and reverse
osmosis membrane performance. Desalination 2001, 137, 141-148.
41. Darwish; B.A.Q., A.; G.S., A.-R.; H.A.; Abdel-Jawad, M., Predictability of
membrane performance of reverse Osmosis systems for seawater desalination.
Desalination 1989, 75, 55-69.
42. Paul, D. R., Reformulation of the solution-diffusion theory of reverse osmosis.
Journal of membrane science 2004, 241, (2), 371-386.
43. Koo, C. H.; Mohammad, A. W.; Suja’, F.; Meor Talib, M. Z., Review of the effect
of selected physicochemical factors on membrane fouling propensity based on
fouling indices. Desalination 2012, 287, 167-177.
44. Park, M.; Kim, J. H., Numerical analysis of spacer impacts on forward osmosis
membrane process using concentration polarization index. Journal of Membrane
Science 2013, 427, 10-20.
45. Ke, X.; Hongqiang, R.; Lili, D.; Jinju, G.; Tingting, Z., A review of membrane
fouling in municipal secondary effluent reclamation. Environmental science and
pollution research international 2013, 20, (2), 771-7.
46. Tran, T.; Bolto, B.; Gray, S.; Hoang, M.; Ostarcevic, E., An autopsy study of a
fouled reverse osmosis membrane element used in a brackish water treatment
plant. Water research 2007, 41, (17), 3915-23.
47. Van de Llsdonk , C. A. C.; van Paassen , J. A. M.; Schippers , J. C., Monitoring
scaling in nanofiltration and reverse osmosis membrane systems. Desalination
2000, 132, 101-108.
48. Antony, A.; Low, J. H.; Gray, S.; Childress, A. E.; Le-Clech, P.; Leslie, G., Scale
formation and control in high pressure membrane water treatment systems: A
review. Journal of Membrane Science 2011, 383, (1-2), 1-16.
49. Gilron, J.; Hasson, D., Calcium sulphate fouling of reverse osmosis
membranes:flux decline mechanism. Chemhzl Engineering Science 1987, 42,
2351-2360.
50. Lee, S.; Kim, J.; Lee, C.-H., Analysis of CaSO4 scale formation mechanism in
various nanofiltration modules. Journal of Membrane Science 1999, 163, 63-74.
51. Lee, S.; Lee, C.-H., MEffect of operatiog conditions on CaSO4 scale formation
mechanism in nanofiltration for water softening. Scale formation mechanism in
nanofiltration 2000, 34, 3854-3866.
52. Pepvov, A. G., Scale formation prognosis and cleaning procedure schedules in
reverse osmosis systems operation. Desalination 1991, 83, 77-118
53. Hasson, D.; Drak, A.; Semiat, R., Inception of CaSO4 scaling on RO membranes
at various water recovery levels. Desalination 2001, 139, 73-81.
54. Salahi, A.; Abbasi, M.; Mohammadi, T., Permeate flux decline during UF of oily
wastewater: Experimental and modeling. Desalination 2010, 251, (1-3), 153-160.
55. Jarusutthirak, C.; Mattaraj, S.; Jiraratananon, R., Influence of inorganic scalants
and natural organic matter on nanofiltration membrane fouling. Journal of
Membrane Science 2007, 287, (1), 138-145.
56. Kaya, Y.; Gönder, Z. B.; Vergili, I.; Barlas, H., The effect of transmembrane
pressure and pH on treatment of paper machine process waters by using a
two-step nanofiltration process: Flux decline analysis. Desalination 2010, 250,
(1), 150-157.
57. Mohammadi, T.; Esmaeelifar, A., Wastewater treatment of a vegetable oil factory
by a hybrid ultrafiltration-activated carbon process. Journal of Membrane Science
2005, 254, (1-2), 129-137.
58. Vela, M. C. V.; Blanco, S. Á.; García, J. L.; Rodríguez, E. B., Analysis of
membrane pore blocking models applied to the ultrafiltration of PEG. Separation
and Purification Technology 2008, 62, (3), 489-498.
59. Jonsson , A.-S.; Lindau , J.; Wimmerstedt , R.; Brinck , J.; Jonsson, B., Influence
of the concentration of a low-molecular organic solute on the flux reduction of a
polyethersulphone ultrafiltration membrane. 1997, 135, 117-128.
60. Tien, C.; Ramarao, B. V., Revisiting the laws of filtration: An assessment of their
use in identifying particle retention mechanisms in filtration. Journal of
Membrane Science 2011, 383, (1-2), 17-25.
61. Mah, S.-K.; Chuah, C.-K.; Cathie Lee, W. P.; Chai, S.-P., Ultrafiltration of palm
oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling
mechanism analysis and membrane characterizations. Separation and Purification
Technology 2012, 98, 419-431.
62. Bodansky, D., Nuclear Energy-Principles. 1996.
63.Gershey, E. L.; Klein, R. C.; Party, E. W., A. low-level radioactive waste. 1990.
64.Lee, S.; Ang, W. S.; Elimelech, M., Fouling of reverse osmosis membranes by
hydrophilic organic matter: implications for water reuse. Desalination 2006, 187,
(1-3), 313-321.
65. Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis. .
Desalination 2003, 157, 403-407.
66. Rahman, R.; Ibrahium, H.; Hung, Y. T., Liquid radioactive wastes treatment: a
review. Water 2011, 3, 551-565.
67. Shiue, M. Y.; Mierzwa, J.; Yang, M. H., Mechanism of the action of palladium and
palladium- magnesium nitrate modifiers used in the determination of tellurium by
electrothermal atomic absorption spectoometry. J. Anal. Spectrom 2001, 16, 10.
68. Sun, Y.; Sun, M., Determination of 42 Trace Elements in Seawater by Inductively
Coupled Plasma Mass Spectrometry After APDC Chelate Co‐precipitation
Combined With Iron. Analytical Letters 2007, 40, (12), 2391-2404.
69. Stefanova, V.; Georgieva, D.; Kmetov, V.; Roman, I.; Canals, A., Unmodified
manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of
trace metal–APDC complexes followed by inductively coupled plasma mass
spectrometry analysis. Journal of Analytical Atomic Spectrometry 2012, 27, (10),
1743.
70. Shiue, M. Y.; Mierzwa, J.; Yang, M. H., Mechanism of the action of palladium and
palladium, magnesium nitrate modifiers used in the determination of tellurium by
electrothermal atomic absorption spectrometry. Journal of Analytical Atomic
Spectrometry 2001, 16, (10), 1172-1179.
71. Sitko, R.; Kocot, K.; Zawisza, B.; Feist, B.; Pytlakowska, K., Liquid-phase
microextraction as an attractive tool for multielement trace analysis in
combination with X-ray fluorescence spectrometry: an example of simultaneous
determination of Fe, Co, Zn, Ga, Se and Pb in water samples. Journal of
Analytical Atomic Spectrometry 2011, 26, (10), 1979.
72. Weldegebriel, Y.; Chandravanshi, B. S.; Wondimu, T., Concentration levels of
metals in vegetables grown in soils irrigated with river water in Addis Ababa,
Ethiopia. Ecotoxicology and environmental safety 2012, 77, 57-63.
73. Ang, W. S.; Yip, N. Y.; Tiraferri, A.; Elimelech, M., Chemical cleaning of RO
membranes fouled by wastewater effluent: Achieving higher efficiency with
dual-step cleaning. Journal of Membrane Science 2011, 382, (1-2), 100-106.
74. Tian, H.; Wang, D.; Xu, W.; Song, A.; Hao, J., Balance of coordination and
hydrophobic interaction in the formation of bilayers in metal-coordinated
surfactant mixtures. Langmuir : the ACS journal of surfaces and colloids 2013, 29, (11), 3538-45.
75. Peng, G.; Tian, G., Using electrode electrolytes to enhance electrokinetic removal
of heavy metals from electroplating sludge. Chemical Engineering Journal 2010,
165, (2), 388-394.
76. Garcia, M. T.; Campos, E.; Ribosa, I.; Latorre, A.; Sanchez-Leal, J., Anaerobic
digestion of linear alkyl benzene sulfonates: biodegradation kinetics and
metabolite analysis. Chemosphere 2005, 60, (11), 1636-43.
77. Zhang, Z.; Zhang, J.; Liao, L.; Xia, Z., Synergistic effect of cationic and anionic
surfactants for the modification of Ca-montmorillonite. Materials Research
Bulletin 2013, 48, (5), 1811-1816.
78. Kools, W. F. C.; Konagurthu, S.; Greenberg, A. R.; Bond, L. J.; Krantz, W. B.;
Den, T. V.; Boomgaard; Strathmann, H., Use of ultrasonic time-domain
reflectometry for real-time measurement of thickness changes during evaporative
casting of polymeric films. Journal of Applied Polymer Science 1998, 69,
2013-2019.
79. Peterson, R. A.; Greenberg, A. R.; Bond, L. J.; Krantz, W. B., Use of ultrasonic
TDR for real-time noninvasive measurement of compressive strain during
membrane compac. Desalination 1998, 116, 115-122.
80. Aerts, P.; Greenberg, A. R.; Leysen, R.; Krantz, W. B.; Reinsch, V. E.; Jacobs, P.
A., The influence of filler concentration on the compaction and filtration
properties of Zirfon®-composite ultrafiltration membranes. Separation and
Purification Technology 2001, 22-23, 663-669.
81. Mairal, A. P.; Greenberg, A. R.; Krantza, W. B.; Bond, L. J., Real-time
measurement of inorganic fouling of RO desalination membranes using ultrasonic
time-domain re¯ectometry. Journal of Membrane Science 1999, 159, 185-196.
82. Sima, S. T. V.; Chong, T. H.; Krantz, W. B.; Fanea, A. G., Monitoring of colloidal
fouling and its associated metastability using Ultrasonic Time Domain
Reflectometry. Journal of Membrane Science 2012, 401-402, 241-253.
83. An, G.; Lin, J.; Li, J.; Jian, X., In situ monitoring of membrane fouling in
spiral-wound RO modules by UTDR with a sound intensity modeling.
Desalination and Water Treatment 2011, 32, (1-3), 226-233.
84. Cheng, L.-H.; Yang, Y.-C.; Chen, J.; Lin, Y.-H.; Wang, S.-H., A new view of
membrane fouling with 3D ultrasonic imaging techniques: Taking the canola oil
with phospholipids for example. Journal of Membrane Science 2011, 372, (1-2),
134-144.
85. Jung, S. H.; Park, D.; Park, J. H.; Kim, Y. M.; Ha, K. S., Molecular imaging of
membrane proteins and microfilaments using atomic force microscopy.
Experimental & molecular medicine 2010, 42, (9), 597-605.
86. Bégoin, L.; Rabiller-Baudry, M.; Chaufer, B.; Faille, C.; Blanpain-Avet, P.;
Bénézech, T.; Doneva, T., Methodology of analysis of a spiral-wound module.
Application to PES membrane for ultrafiltration of skimmed milk. Desalination
2006, 192, (1-3), 40-53.
87. Fathizadeh, M.; Aroujalian, A.; Raisi, A.; Fotouhi, M., Preparation and
characterization of thin film nanocomposite membrane for pervaporative
dehydration of aqueous alcohol solutions. Desalination 2013, 314, 20-27.
88. Rajaeian, B.; Rahimpour, A.; Tade, M. O.; Liu, S., Fabrication and
characterization of polyamide thin film nanocomposite (TFN) nanofiltration
membrane impregnated with TiO2 nanoparticles. Desalination 2013, 313,
176-188.
89. Lee, D.-J.; Li, Q.; Kim, H.; Lee, K., Preparation of Ni-MOF-74 membrane for
CO2 separation by layer-by-layer seeding technique. Microporous and
Mesoporous Materials 2012, 163, 169-177.
90.Choe, M.; Deboudt, K.; Osa´n, J. n.; Flament, P.; Grieken, R. V., Quantitative
Determination of Low-Z Elements in Single Atmospheric Particles on Boron
Substrates by Automated Scanning Electron
Microscopy-Energy-Dispersive X-ray Spectrometry. Anal. Chem. 2005, 77,
5686-5692.
91. Gray, A. L., Solid Sample Introduction by Laser Ablation for Inductively Coupled
Plasma Source Mass Spectrometry. ANALYST, MAY 1985, 110, 551-556.
92. Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J., Femtosecond (fs) lasers coupled with
modern ICP-MS instruments provide new and improved potential for in situ
elemental and isotopic analyses in the geosciences. Chemical Geology 2012,
330-331, 260-273.
93. McKibbin, S. J.; Ireland, T. R.; Amelin, Y.; O’Neill, H. S. C.; Holden, P., Mn–Cr
relative sensitivity Factors for Secondary Ion Mass Spectrometry analysis of
Mg–Fe–Ca olivine and implications for the Mn–Cr chronology of meteorites.
Geochimica et Cosmochimica Acta 2013, 110, 216-228.
94. Konz, I.; Fernandez, B.; Fernandez, M. L.; Pereiro, R.; Gonzalez, H.; Alvarez, L.;
Coca-Prados, M.; Sanz-Medel, A., Gold internal standard correction for elemental
imaging of soft tissue sections by LA-ICP-MS: element distribution in eye
microstructures. Analytical and bioanalytical chemistry 2013, 405, (10), 3091-6.
95. Huelga-Suarez, G.; Fernandez, B.; Moldovan, M.; Garcia Alonso, J. I., Detection
of transgenerational barium dual-isotope marks in salmon otoliths by means of
LA-ICP-MS. Analytical and bioanalytical chemistry 2013, 405, (9), 2901-9.
96. Jimenez, M. S.; Rodriguez, L.; Bertolin, J. R.; Gomez, M. T.; Castillo, J. R.,
Evaluation of gel electrophoresis techniques and laser ablation-inductively
coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding
proteins in plankton. Analytical and bioanalytical chemistry 2013, 405, (1),
359-68.
97. Kellett, L. C.; Golitko, M.; Bauer, B. S., A provenance study of archaeological
obsidian from the Andahuaylas region of southern Peru. Journal of
Archaeological Science 2013, 40, (4), 1890-1902.
98. Pitblado, B. L.; Cannon, M. B.; Neff, H.; Dehler, C. M.; Nelson, S. T.,
LA-ICP-MS analysis of quartzite from the Upper Gunnison Basin, Colorado.
Journal of Archaeological Science 2013, 40, (4), 2196-2216.
99. Alamilla, F.; Calcerrada, M.; Garcia-Ruiz, C.; Torre, M., Forensic discrimination
of blue ballpoint pens on documents by laser ablation inductively coupled plasma
mass spectrometry and multivariate analysis. Forensic science international 2013,
228, (1-3), 1-7.
100. Zhou, T.; Fan, Y.; Yuan, F.; Zhang, L.; Qian, B.; Ma, L.; Yang, X., Geology and
geochronology of magnetite–apatite deposits in the Ning-Wu volcanic basin,
eastern China. Journal of Asian Earth Sciences 2013, 66, 90-107.
101. Piispanen, M. H.; Niemelä, M. E.; Tiainen, M. S.; Laitinen, R. S., Prediction of
Bed Agglomeration Propensity Directly from Solid Biofuels: A Look Behind
Fuel Indicators. Energy & Fuels 2012, 26, (4), 2427-2433.
102. Becker, J. S.; Salber, D., New mass spectrometric tools in brain research. TrAC
Trends in Analytical Chemistry 2010, 29, (9), 966-979.
103. González, J. J.; Fernández, A.; Mao, X.; Russo, R. E., Scanning vs. single spot
laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry.
Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59, (3), 369-374.
104. M.V., Z.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S., Imaging of
Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively
coupled plasma mass spectrometry. International Journal of Mass
Spectrometry 2006, 257, 27-33.
105. B., W.; Garboś, S.; Bulska, E.; Hulanicki, A., Determination of iron and copper
in old manuscripts by slurry sampling graphite furnace atomic absorption
spectrometry and laser ablation inductively coupled plasma mass spectrometry.
Spectrochimica Acta Part B: Atomic Spectroscopy 1999, 54, 797-804.
106. B., W.; Moor, C.; Richner, P.; Br¨onnimann; Magyar, B., Laser ablation
inductively coupled plasma mass spectrometry_LA-ICP-MS.for spatially
resolved trace element determination of solids using an autofocus system.
Spectrochimica Acta Part B: Atomic Spectroscopy 1999, 54, 289-298.
107. F., D. S.; Ward, N. I., Recent biological and environmental applications of laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal
of Analytical Atomic Spectrometry 2005 20, 821–829.
108. Sarah, G.; Gratuze, B.; Barrandon, J.-N., Application of laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient
silver coins. J. Anal. At. Spectrom 2007 22, 22, 1163.
109. Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G., Deposition and element
fractionation processes during atmospheric pressure laser sampling for analysis
by ICP-MS. Appl. Surf. Sci. 1998, 127-129, 278-289.
110. Pisonero, J.; Koch, J.; Wälle, M.; Hartung, W.; Spencer, N. D.; Günther, D.,
Capabilities of Femtosecond Laser Ablation Inductively Coupled Plasma Mass
Spectrometry for Depth Profiling of Thin Metal Coatings. Anal. Chem. 2007, 79,
2325-2333.
111. Mateo, M. P.; Garcia, C. C.; Hergenröder, R., Depth Analysis of Polymer-Coated
Steel Samples Using Near-Infrared Femtosecond Laser Ablation Inductively
Coupled Plasma Mass Spectrometry. . Anal. Chem. 2007, 13, 4908-4914.
112. Mason, P. R. D. M., A. J. G., , Depth-resolved analysis in multi-layered glass and
metal materials using laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS). . J. Anal. At. Spectrom. 2001, 12, 1381-1388.
113. J. G. Mank, A.; R. D. Mason, P., A critical assessment of laser ablation ICP-MS
as an analytical tool for depth analysis in silica-based glass samples. J. Anal. At.
Spectrom. 1999, 14 1143-1153.
114. Hobbs, A. L. A., J. R., Trace elemental analysis of automotive paints by laser
ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).
Analytical and bioanalytical chemistry 2003, 376, 1265-71.
115. Park, Y.; Lee, Y.-C.; Shin, W. S.; Choi, S.-J., Removal of cobalt, strontium and
cesium from radioactive laundry wastewater by ammonium
molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering
Journal 2010, 162, (2), 685-695.
116. Chang, E. E.; Yang, S.-Y.; Huang, C.-P.; Liang, C.-H.; Chiang, P.-C., Assessing
the fouling mechanisms of high-pressure nanofiltration membrane using the
modified Hermia model and the resistance-in-series model. Separation and
Purification Technology 2011, 79, (3), 329-336.
117. Ho, J.; Sung, S., Effects of solid concentrations and cross-flow hydrodynamics
on microfiltration of anaerobic sludge. Journal of Membrane Science 2009, 345,
(1-2), 142-147.
118. Mata, J.; Varade, D.; Bahadur, P., Aggregation behavior of quaternary salt based
cationic surfactants. Thermochimica Acta 2005, 428, (1-2), 147-155.
119. Sanderson, R.; Jianxin Li; Hallbauer, D. K.; Sikde, S. K., Fourier wavelets from
ultrasonic spectra: a new approach for detecting the onset of fouling during
microfiltration of paper mill effluent. Environ. Sci. Technol. 2005, 39,
7299-7305.