簡易檢索 / 詳目顯示

研究生: 徐建華
Hsu, Chien-Hua
論文名稱: 應用雷射剝蝕感應耦合電漿質譜儀及超音波影像系統探討以薄膜處理廢水的阻塞問題
Using LA-ICP-MS and ultrasound imaging system to investigate fouling of membrane in wastewater treatment
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 張怡怡
Chang, E-E.
蔣本基
Chiang, Pen-Chi
林俊德
Lin, Justin Chun-Te
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 125
中文關鍵詞: 薄膜錯合物金屬雷射剝蝕感應耦合電漿質譜儀
外文關鍵詞: membrane, complex, metal, laser ablation inductively coupled plasma mass spectrometer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,化學工業所產生的重金屬是汙染環境水體主要來源,但現今廢水處理技術無法有效將重金屬物質清除乾淨。此外,如離子交換和溶劑萃取的預處理過程會產生有機物的二次性污染,因此本研究使用薄膜過濾技術,進行去除廢水中微量重金屬物質(Co)與螯合劑(APDC)與所形成錯合物的方法。本研究將探討不同追蹤物的溶質系統(Co、Sr及Cs)對APDC的影響,研究結果可發現在不同單溶質系統中,APDC的選擇性大小為Co>>Sr>Cs。LA-ICP-MS結合α-step輪廓分析儀驗證可應用在薄膜追蹤有機物的影像分佈情形。研究結果中利用Hermia模式進行分析阻塞機制,並以Co作為追蹤劑,探討不同有機物(APDC、LAS、SDS及CTAB)與Co元素的錯合能力,並搭配LA-ICP-MS去分析薄膜表面上有機物的影像分佈情形,其結果顯示以APDC-Co中的S和Co元素分佈最相似(R2= 0.9402),代表有很強的結合能力。而為了將薄膜回收再利用,研究中亦探討使用不同化學藥劑(純水、2% HCl及1M NaOH)去除薄膜阻塞物,並搭配超音波影像系統觀察薄膜清洗後表面粗糙程度。


    In recent years, industrial wastewater is a major source of metal polluting in the environment. However, there is still no effective way to remove heavy metal in the wastewater. In addition, pretreatment processes such as ion exchange and solvent extraction suffer from the secondary pollution caused by the spent resins/solvent. In this study, membrane filtration techniques to remove trace metals and spent resins/solvent in the simulated wastewater Co, Sr and Cs are selected to evaluate the chelating ability of APDC. The results show that the selectivity of APDC is in the following order: Co >> Sr> Cs. Through the LA-ICP-MS and α-step profilometer measurement, the obtained results are consistent with fouling mechanisms based on Hermia model and reveal that the chelating complex could be used as a tracer to demonstrate the phenomenon of organic fouling in the membrane filteration.. Thus Co is chosen to explore the complexation ability of different organics (APDC, LAS, SDS and CTAB) as well as a tracer to present the spatial distribution of organics on the membrane surface. The results show that the distribution of S and Co in the APDC-Co sample has high correlation (R2 = 0.9402) and reveals strong affinity between APDC and Co. The ultrasonic imaging system is also conducted to investigate the depth/ roughness of membrane surface before and after the foulant removing by different chemical agents (water, 2% HCl and 1M NaOH)).

    Contents 摘要 I Abstract II 謝誌 III Contents IV Table index VII Figure index IX Chapter 1 Introduction 1 1.1. General overview 1 1.2. Aims of this study 3 Chapter 2 Literature Review 5 2.1. Introduction of membranes 5 2.1.1. Classification of membranes 5 2.1.2. Membrane materials 7 2.1.3. Transport mechanisms of membrane filtration 9 2.1.4. Scale formation 12 2.1.5. Hermia model for membrane fouling 14 2.2. Application of membrane technology to simulated radioactive laundry wastewater treatment 17 2.2.1. States-of-the arts in membrane surface characterization 17 2.2.2. Selection of inorganic species as model scalants 20 2.3. Identification of membrane fouling and surface analysis 24 2.3.1. Conventional analytical methods for fouled membranes 24 2.3.2. Developments and applications of LA-ICP-MS 29 2.3.3. Mapping technique of LA-ICP-MS 33 2.3.4. Depth profile of LA-ICP-MS 34 Chapter 3 Experimental 35 3.1. Reagents and materials 35 3.2. Apparatus and device 38 3.2.1. Three-channels high pressure plate-and-frame membrane filtration system 38 3.2.2. LA-ICP-MS 39 3.2.3. α-step profilometer 43 3.2.4. Total Organic Carbon(TOC) Analyzer 45 3.2.5. Ultrasound imaging system 45 3.3. Details of experimental methods 48 3.3.1. Filtration and cleaning protocols 48 3.3.2. MF/UF/NF/RO scaling tests 49 3.3.3. Mapping technique of LA-ICP-MS 50 3.3.4. Depth profile of fouled membranes 51 Chapter 4 Results and discussion 53 4.1. Study of tracing ability of APDC with different metal 53 4.1.1. Effect of single-species (APDC-Co, APDC-Sr, APDC-Cs) on fouling 53 4.1.2. Membrane depth analysis of the obstructions 58 4.1.3. The fouling distribution based on Hermia model 65 4.2. Study of tracing ability of diffent surfactant and chelating agent with Co 69 4.2.1. The effect of organics on the fouling of membrane 69 4.2.2.2-D distribution image of the fouling on the membrane surface 71 4.2.3. Fouling mechanism identified by Hermia model 74 4.3. Application of ultrasonic image technology on fouled RO and NF Membranes 77 4.3.1. Membranes Comparison of two-dimensional image for membrane after cleaning 77 4.3.2. Membranes Comparison of three-dimensional image for membrane after cleaning 81 Chapter 5 Conclusions and future work 91 5.1. Conclusions 91 5.2. Future work 93 Chapter 6 Reference 94 Appendix 104 Table index Table 2.1 Characteristics of various membranes 9 Table 2.2 Fouling Index of various membrane types, filtration modes and equations 10 Table 2.3 Filtration mode, value of k2 and filtration equation 15 Table 2.4 Nomenclature 16 Table 2.5 Main radioactive elements from different sources 19 Table 2.6 Comparison of different treatment methods 19 Table 2.7 Classification of surfactants 23 Table 2.8 Recent applications of LA-ICP-MS 30 Table 2.9 Comparison of LA-ICP-MS and other analytical techniques 31 Table 3.1 General information of selected organics in the experiment 36 Table 3.2 Properties of the membranes employed in this study. 37 Table 3.3 Operation conditions for laser ablation 41 Table 3.4 The scan parameters of Dektak-150 profilometer system in this study 44 Table 3.5 The scan parameters of utrasound imaging system in this study 47 Table 3.6 The concentration of complex used in the experiments 50 Table 4.1 The rejection of different species system [mean mg L−1 (S.D.) , n= 3] 54 Table 4.2 Intensity signal of each layer [mean (S.D.) , n= 3] 59 Table 4.3 K constants of four Hermia's model for individual cations and their complex 67 Table 4.4 R2 values of four Hermia's model for individual cations and their complex. 68 Table 4.5 K constants of four Hermia's model for individual cations and their complex. 75 Table 4.6 R2 values of different fouling model for different organic matter 76 Table 4.7 Signal intensity (in dB) of RO and NF membrane before and after cleaning by ultrasound. [mean db (S.D.) , n= 3] 80 Table 4.8 Total thickness of RO and NF membrane before and after cleaning by ultrasound. [mean μm (S.D.) , n= 3] 89 Table 4.9 Signal thickness of upper layer and inner layer for RO membrane before and after cleaning by ultrasound. [mean μm (S.D.) , n= 3] 89 Table 4.10 Signal thickness of upper layer and inner layer for NF membrane before and after cleaning by ultrasound. [mean μm (S.D.) , n= 3] 90 Table A.1 Complex permeability and linearity coefficient of test membranes 104 Table A.2 Effect of operational pressure on rejections [ mean mg L−1 (S.D.) , n= 3] by TOC and ICP-MS analysis. (APDC-Co : 50 ppm and 10 ppm) 105 Table A.3 Effect of different membrane on rejections [mean mg L−1 (S.D.) , n= 3] by TOC and ICP-MS analysis. (APDC-Co : 50 ppm and 10 ppm) 106 Table A.4 R2 values of different fouling model for different membrane. 107 Table B.1 EDS of weight percent of element in APDC-Co, LAS-Co , SDS-Co and CTAB-Co 107 Figure index Figure 1.1 Research scopes and experiment flowcharts 4 Figure 2.1 The pore size and driving force of different filtration 6 Figure 2.2 Schematic diagram of scale formation 13 Figure 2.3 Schematic diagram of four types of fouling mechanisms 16 Figure 2.4 Stucture diagram of APDC combine with divalent metal ion 21 Figure 2.5 Micelle formation process 23 Figure 2.6 (a) Schematic diagram of UTDR measure (b) corresponding time-domain responses for the configuration. 25 Figure 2.7 Comparison of ultrasonic image with SEM for the control PES membrane (a) cross section, (b) layers upon the non-woven support, and (c) membrane layer 26 Figure 2.8 Ni-MOF-74 membrane surface image of (a) 1 cycle, (b) 2 cycle, (c) 4 cycle, and (d) 8 cycle 27 Figure 2.9 Ni-MOF-74 membrane (a) surface image (d) cross-sectional image 28 Figure 3.1 A photograph of membrane filtration system 38 Figure 3.2 The schematic diagram of membrane filtration system (Dead-end) 39 Figure 3.3 A photograph of Newwave UP 213 laser system 40 Figure 3.4 The schematic diagram of the LA-ICP-MS system 41 Figure 3.5 A photograph of Agilent 7500a ICP-MS 42 Figure 3.6 The schematic diagram of ICP-MS 43 Figure 3.7 A photograph of α-step profilometer system 44 Figure 3.8 The meaning of IR spectrum 47 Figure 3.8 Schematic diagram of ultrasonic imaging system for membrane scaling 48 Figure 3.9 Illustrations of B-mode scanning 48 Figure 3.10 The image of the line scan mode after ablation 51 Figure 3.11 (a) Craters on the membrane surface ablated by laser system in 1, 5, 10, 20, 40, 60 seconds ; (b) Cross-section of the ablation craters measured by Dektak 150 52 Figure 4.1 The flux of (a) APDC-Co (b) APDC-Sr (c) APDC-Cs 54 Figure 4.2 The distribution image of elements on the membrane. APDC-Co: (a) S (b) Co; APDC-Sr: (c) S (d) Sr; APDC-Cs: (e) S (f) Cs. 56 Figure 4.3 The correlation matrix of analyzed elements in the APDC-Co: (a) S and Co; APDC-Sr: (b) S and Sr ; APDC-Cs: (c) S and Cs 57 Figure 4.4 Signal intensity of each element (pH = 3) in different depth of the fouled RO membranes (a) pure Co (b) pure Sr (c) pure Cs (d) APDC-Co (e) APDC-Sr (f) APDC-Cs. 60 Figure 4.5 Elements fouling distribution in different depth (a) Co2+ (b) APDC-Co 62 Figure 4.6 Elements fouling distribution in different depth (a) Sr2+ (b) APDC-Sr 63 Figure 4.7 Elements fouling distribution in different depth (a) Cs + (b) APDC-Cs. 64 Figure 4.8 Flux of different operation time for fitting model (a)Co2+ (b) APDC-Co (c) Sr2+ (d) APDC-Sr (e) Cs+(f) APDC-Cs 67 Figure 4.9 The flux of complexes 70 Figure 4.10 The rejection of complexes 70 Figure 4.11 shows imagines of elemental distributions of various samples on the membrane. (a) S of APDC-Co; (b) Co of APDC-Co; (c) S of LAS-Co; (d) Co of LAS-Co; (e) S of SDS-Co; (f) Co of SDS-Co; (g) S of CTAB-Co; (h) Co of CTAB-Co APDC-Co 72 Figure 4.12 The correlation matrix of analyzed elements in the APDC-Co:(a) S and Co ; LAS-Co/Cs : (b) S and Co ; SDS-Co:(c) S and Co CTAB-Co: (d)S and Cs 73 Figure 4.13 Flux of different operation time for fitting model (a) APDC-Co (b) LAS-Co (c) SDS-Co (d) CTAB-Co 75 Figure 4.14 Two-dimensional ultrasonic image of RO membrane surface (a) Virgin ; (b),(c) and (d) without cleaning ; (e) pure water cleaning ; (f) 2% HCl cleaning (g) 1M NaOH cleaning 79 Figure 4.15 Two-dimensional ultrasonic image of NF membrane surface (a) Virgin ; (b),(c) and (d) without cleaning ; (e) pure water cleaning ; (f) 2% HCl cleaning (g) 1M NaOH cleaning 79 Figure 4.16 Three-dimensional ultrasonic thickness image of RO membrane (a)Virgin; (b),(c) and (d) without cleaning ; (e) pure water cleaning ; (f) 2% HCl cleaning (g) 1M NaOH cleaning 83 Figure 4.17 Three-dimensional ultrasonic thickness image of NF membrane (a Virgin; (b),(c) and (d) without cleaning ; (e) pure water cleaning ; (f) 2% HCl cleaning (g) 1M NaOH cleaning. 84 Figure 4.18 Three-dimensional ultrasonic thickness image of RO membrane. Upper layer:(a),(b),(c) without cleaning,(d)pure water cleaning, (e) 2% HCl cleaning, (f) 1M NaOH cleaning. 85 Figure 4.19 Three-dimensional ultrasonic thickness image of RO membrane. Lower layer:(g),(h),(i) without cleaning,(j)pure water cleaning, (k) 2% HCl cleaning, (l) 1M NaOH cleaning 86 Figure 4.20 Three-dimensional ultrasonic thickness image of NF membrane. Upper layer:(a),(b),(c) without cleaning,(d)pure water cleaning, (e) 2% HCl cleaning, (f) 1M NaOH cleaning. 87 Figure 4.21Three-dimensional ultrasonic thickness image of NF membrane. Lower layer:(g),(h),(i) without cleaning,(j)pure water cleaning, (k) 2% HCl cleaning, (l) 1M NaOH cleaning. 88 Figure A.1 Effect of pressure on permeate flux 109 Figure A.2 Photographs of fouled membranes (a) RO; (b)NF; (c) UF; (d) MF 109 Figure A.3 Permeate flux of the four membranes in filtration the APDC-Co solution: (a) RO (b) NF (c) UF (d) MF. 110 Figure A.4 The fouling mode fitting of operation time for (a) RO (b) NF (c) UF (d) MF. 111 Figure A.5 Saturation index of Co species at different pH 112 Figure A.6 The flux of (a) pH3 (b) pH7 (c) pH9 113 Figure A.7 Effect of the pH value on rejections.TOC and ICP-MS analysis: APDC-Co; 50 ppm; 10 ppm 114 Figure A.8 The photos of different APDC concentrations on binding of Co. (a) 1:1(b) 2:1 (c) 3:1 115 Figure A.9 The flux of (a) APDC-Co (1:1) (b) APDC-Co (2:1) (c) APDC-Co (3:1).. 116 Figure A.10 The rejection of APDC-Co under different APDC concentration 117 Figure B.1 FT-IR spectrum of (a) APDC (b)APDC-Co (c) LAS (d) LAS-Co (e) SDS (f) SDS-Co (g) CTAB (h) CTAB-Co 120 Figure B.2 (A) The photograph and (B) DLS spectrum of (a) APDC-Co (b) LAS-Co (c) SDS-Co (d) CTAB-Co 121 Figure B.3 SEM-EDX of complexes. APDC-Co: (a) and (b); LAS-Co: (c) and (d) ; SDS-Co: (e) and (f) ; CTAB-Co: (g) and (h) 123 Figure B.4 The photos of different complexes fouling (a) APDC-Co(b) LAS-Co (c) SDS-Co (d) CTAB-Co 124 Figure B.5 The photo of fouled membrane is respective (a)APDC-Co; (b) APDC-Sr; (c) APDC-Cs 124 Figure B.6 SEM of fouled membranes..(a) MF, (b)UF, (c) NF and (d) RO 125

    1.Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y.-T., Liquid Radioactive Wastes
    Treatment: A Review. Water 2011, 3, (4), 551-565.
    2. Zakrzewska-Trznadel, G.; Harasimowicz, M.; Chmielewski, A. G., Membrane
    processes in nuclear technology-application for liquid radioactive waste treatment.
    Sep. Purif. Technol 2001, 22-23.
    3. Arnal, J.; Sancho, M.; Verdú, G.; Campayo, J.; Gozálvez, J., Treatment of 137Cs
    liquid wastes by reverse osmosis Part II. Real application Desalination 2003, 154,
    35-42.
    4.Cancino-Madariaga, B.; Aguirre, J., Combination treatment of corn starch
    wastewater by sedimentation, microfiltration and reverse osmosis. Desalination
    2011, 279, (1-3), 285-290.
    5.Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis.
    Desalination 2003, 157, 403-407.
    6. Ambashta, R. D.; Sillanpaa, M. E., Membrane purification in radioactive waste
    management: a short review. Journal of environmental radioactivity 2012, 105,
    76-84.
    7.Bernata, X.; Fortuny, A.; Stüber, F.; Bengoa, C.; Fabregat, A.; Font, J., Recovery of
    iron (III) from aqueous streams by ultrafiltration. Desalination 2008, 221, (1-3),
    413-418.
    8. Szöke, S.; Pátzay, G.; Weiser, L., Cobalt(III) EDTA complex removal from aqueous
    alkaline borate solutions by nanofiltration. Desalination 2005, 175, (2), 179-185.
    9. Yong, G.; Jun, Z.; Guanghui, Z.; Dong, Z.; Weiwen, C.; Guoqi, Y.; Xuejun, L.;
    Bangzhong, M.; Junhui, Z.; Ping, G., Treatment of the wastewater containing
    low-level 241Am using flocculation-microfiltration process. Separation and
    Purification Technology 2004, 40, (2), 183-189.
    10. Z.T., G.; H., M., Removal of radionuclides by membrane permeation combined
    with complexation. Desalination 2002, 144, 207-212.
    11. Z.T., G.; H., M., Removal of radionuclides by membrane permeation combined
    with complexation. Desalination 2002, 144, 207-212.
    12. Saeki, D.; Nagao, S.; Sawada, I.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H.,
    Development of antibacterial polyamide reverse osmosis membrane modified with
    a covalently immobilized enzyme. Journal of Membrane Science 2013, 428,
    403-409.
    13. Sim, S. T. V.; Chong, T. H.; Krantz, W. B.; Fane, A. G., Monitoring of colloidal
    fouling and its associated metastability using Ultrasonic Time Domain
    Reflectometry. Journal of Membrane Science 2012, 401-402, 241-253.
    14. Osmonics, G., The Filtration Spectrum.GE Osmonics. 1996.
    15.Cheryan, M., Ultra-filtration and Microfiltration Handbook. 1998.
    16.Gutman, R. G., Membrane Filtration: The Technology of Pressure-Driven
    Crossflow Processes. Crossflow Processes 1987.
    17. Hayama, M.; Yamamoto, K.; Kohori, F.; Sakai, K., How polysulfone dialysis
    membranes containing polyvinylpyrrolidone achieve excellent biocompatibility,J. Membr. Sci. 2004, 234, 41-49.
    18. Dunweg, G.; Lother, S.; Wolfgang, A., Dialysis membrane made of cellulose
    Acetate. US Patent 5 1995, 403, 485.
    19. Ferjani, E.; Lajimi, R. H.; Deratani, A., Bulk and surface modification of cellulose
    diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and
    characterization. Desalination 2002, 146, 325-330.
    20. Qin, J.-J.; Li, Y.; Lee, L.-S.; Lee, H., Cellulose acetate hollow fiber ultrafiltration
    membranes made from CA/PVP 360 K/NMP/water. Journal of Membrane Science
    2003, 218, (1-2), 173-183.
    21. Qin, J.-J.; Oo, M. H.; Cao, Y.-M.; Lee, L.-S., Development of a LCST membrane
    forming system for cellulose acetate ultrafiltration hollow fiber. Separation and
    Purification Technology 2005, 42, (3), 291-295.
    22. Zularisam, A. W.; Ismail, A. F.; Salim, M. R.; Sakinah, M.; Ozaki, H., The effects
    of natural organic matter (NOM) fractions on fouling characteristics and flux
    recovery of ultrafiltration membranes. Desalination 2007, 212, (1-3), 191-208.
    23. Nowak, K. M.; Kowalska, I.; Korbutowicz, M. K., Ultrafiltration of SDS solutions
    using polymeric membranes. Desalination 2005, 184, 415-422.
    24. Ramírez, J. A. L.; Oviedo, M. D. C.; Alonso, J. M. Q., Comparative studies of
    reverse osmosis membranes for wastewater reclamation. Desalination 2006, 191,
    137-147.
    25. Boricha, A. G.; Murthy, Z. V. P., Preparation of N,O-carboxymethyl
    chitosan/cellulose acetate blend nanofiltration membrane and testing its
    performance in treating industrial wastewater. Chemical Engineering Journal
    2010, 157, (2-3), 393-400.
    26. Lawrence Arockiasamy, D. A.; Nagendran, K. H.; Shobana, D. M., Preparation
    and characterization of cellulose acetate/aminated polysulfone blend ultrafiltration
    membranes and their application studies. Sep. Sci. Technol. 2009, 44, 398-421.
    27. Brousse, C. L.; Chapurlat, R.; Quentin, J. P., New membranes for reverse osmosis.
    I. Characteristics of the base polymer: sulphonated polysulphones. Desalination
    1976, 181, 137-153.
    28. Robert, J. P., Composite reverse osmosis and nanofiltration membranes. Journal
    of Membrane Science 1993, 83, 81-150.
    29. Dongliang Wang, K. L., W.K. Teo, Preparation and characterization of
    polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane
    Science 1999, 163, 211-220.
    30. Ma, W. Z.; Zhang, J.; Chen, S. J.; Wang, X. L., Beta-phase of poly(vinylidene
    fluoride) formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend
    from solutions. Appl. Surf. Sci. 2008, 254, 5635-5642.
    31. Lin, D. J.; Chang, C. L.; Chang, C. L.; Chen, T. C.; Cheng, L. P., Fine structure of
    poly(vinylidene fluoride) membranes prepared by phase inversion from a
    water/N-Methyl-2-pyrollidone/poly(vinylidene fluoride) system. Fine structure of
    PVDF membranes 2003.
    32. Ma, W.; Zhang, J.; Chen, S.; Wang, X., β-Phase of poly(vinylidene fluoride)
    formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend from
    solutions. Applied Surface Science 2008, 254, (17), 5635-5642.
    33. Xiao, Y.; Liu, X. D.; Wang, D. X.; Lin, Y. K.; Han, Y. P.; Wang, X. L., Feasibility
    of using an innovative PVDF MF membrane prior to RO for reuse of a secondary
    municipal effluent. Desalination 2013, 311, 16-23.
    34. Chen, G.; Lin, Y.; Wang, X., Formation of microporous membrane of isotactic
    polypropylene in dibutyl phthalate-soybean oil via thermally induced phase
    separation. Journal of Applied Polymer Science 2007, 105, (4), 2000-2007.
    35. Cui, Z.-Y.; Du, C.-H.; Xu, Y.-Y.; Ji, G.-L.; Zhu, B.-K., Preparation of porous PVdF
    membrane via thermally induced phase separation using sulfolane. Journal of
    Applied Polymer Science 2008, 108, (1), 272-280.
    36. Gu, M.; Zhang, J.; Wang, X.; Ma, W., Crystallization behavior of PVDF in
    PVDF-DMP system via thermally induced phase separation. Journal of Applied
    Polymer Science 2006, 102, (4), 3714-3719.
    37. Gu, M.; Zhang, J.; Wang, X.; Tao, H.; Ge, L., Formation of poly(vinylidene
    fluoride) (PVDF) membranes via thermally induced phase separation.
    Desalination 2006, 192, (1-3), 160-167.
    38. Li, X.; Lu, X., Morphology of polyvinylidene fluoride and its blend in thermally
    induced phase separation process. Journal of Applied Polymer Science 2006, 101,
    (5), 2944-2952.
    39. Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S., Microporus membrane formation via
    thermally induced phase separation. I.Solid-liquid phase separation. Journal o
    Membrane Science 1990, 52, 239-261.
    40. Bick, A.; Oro, G., Assessing the linkage between feed water quality and reverse
    osmosis membrane performance. Desalination 2001, 137, 141-148.
    41. Darwish; B.A.Q., A.; G.S., A.-R.; H.A.; Abdel-Jawad, M., Predictability of
    membrane performance of reverse Osmosis systems for seawater desalination.
    Desalination 1989, 75, 55-69.
    42. Paul, D. R., Reformulation of the solution-diffusion theory of reverse osmosis.
    Journal of membrane science 2004, 241, (2), 371-386.
    43. Koo, C. H.; Mohammad, A. W.; Suja’, F.; Meor Talib, M. Z., Review of the effect
    of selected physicochemical factors on membrane fouling propensity based on
    fouling indices. Desalination 2012, 287, 167-177.
    44. Park, M.; Kim, J. H., Numerical analysis of spacer impacts on forward osmosis
    membrane process using concentration polarization index. Journal of Membrane
    Science 2013, 427, 10-20.
    45. Ke, X.; Hongqiang, R.; Lili, D.; Jinju, G.; Tingting, Z., A review of membrane
    fouling in municipal secondary effluent reclamation. Environmental science and
    pollution research international 2013, 20, (2), 771-7.
    46. Tran, T.; Bolto, B.; Gray, S.; Hoang, M.; Ostarcevic, E., An autopsy study of a
    fouled reverse osmosis membrane element used in a brackish water treatment
    plant. Water research 2007, 41, (17), 3915-23.
    47. Van de Llsdonk , C. A. C.; van Paassen , J. A. M.; Schippers , J. C., Monitoring
    scaling in nanofiltration and reverse osmosis membrane systems. Desalination
    2000, 132, 101-108.
    48. Antony, A.; Low, J. H.; Gray, S.; Childress, A. E.; Le-Clech, P.; Leslie, G., Scale
    formation and control in high pressure membrane water treatment systems: A
    review. Journal of Membrane Science 2011, 383, (1-2), 1-16.
    49. Gilron, J.; Hasson, D., Calcium sulphate fouling of reverse osmosis
    membranes:flux decline mechanism. Chemhzl Engineering Science 1987, 42,
    2351-2360.
    50. Lee, S.; Kim, J.; Lee, C.-H., Analysis of CaSO4 scale formation mechanism in
    various nanofiltration modules. Journal of Membrane Science 1999, 163, 63-74.
    51. Lee, S.; Lee, C.-H., MEffect of operatiog conditions on CaSO4 scale formation
    mechanism in nanofiltration for water softening. Scale formation mechanism in
    nanofiltration 2000, 34, 3854-3866.
    52. Pepvov, A. G., Scale formation prognosis and cleaning procedure schedules in
    reverse osmosis systems operation. Desalination 1991, 83, 77-118
    53. Hasson, D.; Drak, A.; Semiat, R., Inception of CaSO4 scaling on RO membranes
    at various water recovery levels. Desalination 2001, 139, 73-81.
    54. Salahi, A.; Abbasi, M.; Mohammadi, T., Permeate flux decline during UF of oily
    wastewater: Experimental and modeling. Desalination 2010, 251, (1-3), 153-160.
    55. Jarusutthirak, C.; Mattaraj, S.; Jiraratananon, R., Influence of inorganic scalants
    and natural organic matter on nanofiltration membrane fouling. Journal of
    Membrane Science 2007, 287, (1), 138-145.
    56. Kaya, Y.; Gönder, Z. B.; Vergili, I.; Barlas, H., The effect of transmembrane
    pressure and pH on treatment of paper machine process waters by using a
    two-step nanofiltration process: Flux decline analysis. Desalination 2010, 250,
    (1), 150-157.
    57. Mohammadi, T.; Esmaeelifar, A., Wastewater treatment of a vegetable oil factory
    by a hybrid ultrafiltration-activated carbon process. Journal of Membrane Science
    2005, 254, (1-2), 129-137.
    58. Vela, M. C. V.; Blanco, S. Á.; García, J. L.; Rodríguez, E. B., Analysis of
    membrane pore blocking models applied to the ultrafiltration of PEG. Separation
    and Purification Technology 2008, 62, (3), 489-498.
    59. Jonsson , A.-S.; Lindau , J.; Wimmerstedt , R.; Brinck , J.; Jonsson, B., Influence
    of the concentration of a low-molecular organic solute on the flux reduction of a
    polyethersulphone ultrafiltration membrane. 1997, 135, 117-128.
    60. Tien, C.; Ramarao, B. V., Revisiting the laws of filtration: An assessment of their
    use in identifying particle retention mechanisms in filtration. Journal of
    Membrane Science 2011, 383, (1-2), 17-25.
    61. Mah, S.-K.; Chuah, C.-K.; Cathie Lee, W. P.; Chai, S.-P., Ultrafiltration of palm
    oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling
    mechanism analysis and membrane characterizations. Separation and Purification
    Technology 2012, 98, 419-431.
    62. Bodansky, D., Nuclear Energy-Principles. 1996.
    63.Gershey, E. L.; Klein, R. C.; Party, E. W., A. low-level radioactive waste. 1990.
    64.Lee, S.; Ang, W. S.; Elimelech, M., Fouling of reverse osmosis membranes by
    hydrophilic organic matter: implications for water reuse. Desalination 2006, 187,
    (1-3), 313-321.
    65. Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis. .
    Desalination 2003, 157, 403-407.
    66. Rahman, R.; Ibrahium, H.; Hung, Y. T., Liquid radioactive wastes treatment: a
    review. Water 2011, 3, 551-565.
    67. Shiue, M. Y.; Mierzwa, J.; Yang, M. H., Mechanism of the action of palladium and
    palladium- magnesium nitrate modifiers used in the determination of tellurium by
    electrothermal atomic absorption spectoometry. J. Anal. Spectrom 2001, 16, 10.
    68. Sun, Y.; Sun, M., Determination of 42 Trace Elements in Seawater by Inductively
    Coupled Plasma Mass Spectrometry After APDC Chelate Co‐precipitation
    Combined With Iron. Analytical Letters 2007, 40, (12), 2391-2404.
    69. Stefanova, V.; Georgieva, D.; Kmetov, V.; Roman, I.; Canals, A., Unmodified
    manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of
    trace metal–APDC complexes followed by inductively coupled plasma mass
    spectrometry analysis. Journal of Analytical Atomic Spectrometry 2012, 27, (10),
    1743.
    70. Shiue, M. Y.; Mierzwa, J.; Yang, M. H., Mechanism of the action of palladium and
    palladium, magnesium nitrate modifiers used in the determination of tellurium by
    electrothermal atomic absorption spectrometry. Journal of Analytical Atomic
    Spectrometry 2001, 16, (10), 1172-1179.
    71. Sitko, R.; Kocot, K.; Zawisza, B.; Feist, B.; Pytlakowska, K., Liquid-phase
    microextraction as an attractive tool for multielement trace analysis in
    combination with X-ray fluorescence spectrometry: an example of simultaneous
    determination of Fe, Co, Zn, Ga, Se and Pb in water samples. Journal of
    Analytical Atomic Spectrometry 2011, 26, (10), 1979.
    72. Weldegebriel, Y.; Chandravanshi, B. S.; Wondimu, T., Concentration levels of
    metals in vegetables grown in soils irrigated with river water in Addis Ababa,
    Ethiopia. Ecotoxicology and environmental safety 2012, 77, 57-63.
    73. Ang, W. S.; Yip, N. Y.; Tiraferri, A.; Elimelech, M., Chemical cleaning of RO
    membranes fouled by wastewater effluent: Achieving higher efficiency with
    dual-step cleaning. Journal of Membrane Science 2011, 382, (1-2), 100-106.
    74. Tian, H.; Wang, D.; Xu, W.; Song, A.; Hao, J., Balance of coordination and
    hydrophobic interaction in the formation of bilayers in metal-coordinated
    surfactant mixtures. Langmuir : the ACS journal of surfaces and colloids 2013, 29, (11), 3538-45.
    75. Peng, G.; Tian, G., Using electrode electrolytes to enhance electrokinetic removal
    of heavy metals from electroplating sludge. Chemical Engineering Journal 2010,
    165, (2), 388-394.
    76. Garcia, M. T.; Campos, E.; Ribosa, I.; Latorre, A.; Sanchez-Leal, J., Anaerobic
    digestion of linear alkyl benzene sulfonates: biodegradation kinetics and
    metabolite analysis. Chemosphere 2005, 60, (11), 1636-43.
    77. Zhang, Z.; Zhang, J.; Liao, L.; Xia, Z., Synergistic effect of cationic and anionic
    surfactants for the modification of Ca-montmorillonite. Materials Research
    Bulletin 2013, 48, (5), 1811-1816.
    78. Kools, W. F. C.; Konagurthu, S.; Greenberg, A. R.; Bond, L. J.; Krantz, W. B.;
    Den, T. V.; Boomgaard; Strathmann, H., Use of ultrasonic time-domain
    reflectometry for real-time measurement of thickness changes during evaporative
    casting of polymeric films. Journal of Applied Polymer Science 1998, 69,
    2013-2019.
    79. Peterson, R. A.; Greenberg, A. R.; Bond, L. J.; Krantz, W. B., Use of ultrasonic
    TDR for real-time noninvasive measurement of compressive strain during
    membrane compac. Desalination 1998, 116, 115-122.
    80. Aerts, P.; Greenberg, A. R.; Leysen, R.; Krantz, W. B.; Reinsch, V. E.; Jacobs, P.
    A., The influence of filler concentration on the compaction and filtration
    properties of Zirfon®-composite ultrafiltration membranes. Separation and
    Purification Technology 2001, 22-23, 663-669.
    81. Mairal, A. P.; Greenberg, A. R.; Krantza, W. B.; Bond, L. J., Real-time
    measurement of inorganic fouling of RO desalination membranes using ultrasonic
    time-domain re¯ectometry. Journal of Membrane Science 1999, 159, 185-196.
    82. Sima, S. T. V.; Chong, T. H.; Krantz, W. B.; Fanea, A. G., Monitoring of colloidal
    fouling and its associated metastability using Ultrasonic Time Domain
    Reflectometry. Journal of Membrane Science 2012, 401-402, 241-253.
    83. An, G.; Lin, J.; Li, J.; Jian, X., In situ monitoring of membrane fouling in
    spiral-wound RO modules by UTDR with a sound intensity modeling.
    Desalination and Water Treatment 2011, 32, (1-3), 226-233.
    84. Cheng, L.-H.; Yang, Y.-C.; Chen, J.; Lin, Y.-H.; Wang, S.-H., A new view of
    membrane fouling with 3D ultrasonic imaging techniques: Taking the canola oil
    with phospholipids for example. Journal of Membrane Science 2011, 372, (1-2),
    134-144.
    85. Jung, S. H.; Park, D.; Park, J. H.; Kim, Y. M.; Ha, K. S., Molecular imaging of
    membrane proteins and microfilaments using atomic force microscopy.
    Experimental & molecular medicine 2010, 42, (9), 597-605.
    86. Bégoin, L.; Rabiller-Baudry, M.; Chaufer, B.; Faille, C.; Blanpain-Avet, P.;
    Bénézech, T.; Doneva, T., Methodology of analysis of a spiral-wound module.
    Application to PES membrane for ultrafiltration of skimmed milk. Desalination
    2006, 192, (1-3), 40-53.
    87. Fathizadeh, M.; Aroujalian, A.; Raisi, A.; Fotouhi, M., Preparation and
    characterization of thin film nanocomposite membrane for pervaporative
    dehydration of aqueous alcohol solutions. Desalination 2013, 314, 20-27.
    88. Rajaeian, B.; Rahimpour, A.; Tade, M. O.; Liu, S., Fabrication and
    characterization of polyamide thin film nanocomposite (TFN) nanofiltration
    membrane impregnated with TiO2 nanoparticles. Desalination 2013, 313,
    176-188.
    89. Lee, D.-J.; Li, Q.; Kim, H.; Lee, K., Preparation of Ni-MOF-74 membrane for
    CO2 separation by layer-by-layer seeding technique. Microporous and
    Mesoporous Materials 2012, 163, 169-177.
    90.Choe, M.; Deboudt, K.; Osa´n, J. n.; Flament, P.; Grieken, R. V., Quantitative
    Determination of Low-Z Elements in Single Atmospheric Particles on Boron
    Substrates by Automated Scanning Electron
    Microscopy-Energy-Dispersive X-ray Spectrometry. Anal. Chem. 2005, 77,
    5686-5692.
    91. Gray, A. L., Solid Sample Introduction by Laser Ablation for Inductively Coupled
    Plasma Source Mass Spectrometry. ANALYST, MAY 1985, 110, 551-556.
    92. Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J., Femtosecond (fs) lasers coupled with
    modern ICP-MS instruments provide new and improved potential for in situ
    elemental and isotopic analyses in the geosciences. Chemical Geology 2012,
    330-331, 260-273.
    93. McKibbin, S. J.; Ireland, T. R.; Amelin, Y.; O’Neill, H. S. C.; Holden, P., Mn–Cr
    relative sensitivity Factors for Secondary Ion Mass Spectrometry analysis of
    Mg–Fe–Ca olivine and implications for the Mn–Cr chronology of meteorites.
    Geochimica et Cosmochimica Acta 2013, 110, 216-228.
    94. Konz, I.; Fernandez, B.; Fernandez, M. L.; Pereiro, R.; Gonzalez, H.; Alvarez, L.;
    Coca-Prados, M.; Sanz-Medel, A., Gold internal standard correction for elemental
    imaging of soft tissue sections by LA-ICP-MS: element distribution in eye
    microstructures. Analytical and bioanalytical chemistry 2013, 405, (10), 3091-6.
    95. Huelga-Suarez, G.; Fernandez, B.; Moldovan, M.; Garcia Alonso, J. I., Detection
    of transgenerational barium dual-isotope marks in salmon otoliths by means of
    LA-ICP-MS. Analytical and bioanalytical chemistry 2013, 405, (9), 2901-9.
    96. Jimenez, M. S.; Rodriguez, L.; Bertolin, J. R.; Gomez, M. T.; Castillo, J. R.,
    Evaluation of gel electrophoresis techniques and laser ablation-inductively
    coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding
    proteins in plankton. Analytical and bioanalytical chemistry 2013, 405, (1),
    359-68.
    97. Kellett, L. C.; Golitko, M.; Bauer, B. S., A provenance study of archaeological
    obsidian from the Andahuaylas region of southern Peru. Journal of
    Archaeological Science 2013, 40, (4), 1890-1902.
    98. Pitblado, B. L.; Cannon, M. B.; Neff, H.; Dehler, C. M.; Nelson, S. T.,
    LA-ICP-MS analysis of quartzite from the Upper Gunnison Basin, Colorado.
    Journal of Archaeological Science 2013, 40, (4), 2196-2216.
    99. Alamilla, F.; Calcerrada, M.; Garcia-Ruiz, C.; Torre, M., Forensic discrimination
    of blue ballpoint pens on documents by laser ablation inductively coupled plasma
    mass spectrometry and multivariate analysis. Forensic science international 2013,
    228, (1-3), 1-7.
    100. Zhou, T.; Fan, Y.; Yuan, F.; Zhang, L.; Qian, B.; Ma, L.; Yang, X., Geology and
    geochronology of magnetite–apatite deposits in the Ning-Wu volcanic basin,
    eastern China. Journal of Asian Earth Sciences 2013, 66, 90-107.
    101. Piispanen, M. H.; Niemelä, M. E.; Tiainen, M. S.; Laitinen, R. S., Prediction of
    Bed Agglomeration Propensity Directly from Solid Biofuels: A Look Behind
    Fuel Indicators. Energy & Fuels 2012, 26, (4), 2427-2433.
    102. Becker, J. S.; Salber, D., New mass spectrometric tools in brain research. TrAC
    Trends in Analytical Chemistry 2010, 29, (9), 966-979.
    103. González, J. J.; Fernández, A.; Mao, X.; Russo, R. E., Scanning vs. single spot
    laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry.
    Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59, (3), 369-374.
    104. M.V., Z.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S., Imaging of
    Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively
    coupled plasma mass spectrometry. International Journal of Mass
    Spectrometry 2006, 257, 27-33.
    105. B., W.; Garboś, S.; Bulska, E.; Hulanicki, A., Determination of iron and copper
    in old manuscripts by slurry sampling graphite furnace atomic absorption
    spectrometry and laser ablation inductively coupled plasma mass spectrometry.
    Spectrochimica Acta Part B: Atomic Spectroscopy 1999, 54, 797-804.
    106. B., W.; Moor, C.; Richner, P.; Br¨onnimann; Magyar, B., Laser ablation
    inductively coupled plasma mass spectrometry_LA-ICP-MS.for spatially
    resolved trace element determination of solids using an autofocus system.
    Spectrochimica Acta Part B: Atomic Spectroscopy 1999, 54, 289-298.
    107. F., D. S.; Ward, N. I., Recent biological and environmental applications of laser
    ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal
    of Analytical Atomic Spectrometry 2005 20, 821–829.
    108. Sarah, G.; Gratuze, B.; Barrandon, J.-N., Application of laser ablation inductively
    coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient
    silver coins. J. Anal. At. Spectrom 2007 22, 22, 1163.
    109. Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G., Deposition and element
    fractionation processes during atmospheric pressure laser sampling for analysis
    by ICP-MS. Appl. Surf. Sci. 1998, 127-129, 278-289.
    110. Pisonero, J.; Koch, J.; Wälle, M.; Hartung, W.; Spencer, N. D.; Günther, D.,
    Capabilities of Femtosecond Laser Ablation Inductively Coupled Plasma Mass
    Spectrometry for Depth Profiling of Thin Metal Coatings. Anal. Chem. 2007, 79,
    2325-2333.
    111. Mateo, M. P.; Garcia, C. C.; Hergenröder, R., Depth Analysis of Polymer-Coated
    Steel Samples Using Near-Infrared Femtosecond Laser Ablation Inductively
    Coupled Plasma Mass Spectrometry. . Anal. Chem. 2007, 13, 4908-4914.
    112. Mason, P. R. D. M., A. J. G., , Depth-resolved analysis in multi-layered glass and
    metal materials using laser ablation inductively coupled plasma mass
    spectrometry (LA-ICP-MS). . J. Anal. At. Spectrom. 2001, 12, 1381-1388.
    113. J. G. Mank, A.; R. D. Mason, P., A critical assessment of laser ablation ICP-MS
    as an analytical tool for depth analysis in silica-based glass samples. J. Anal. At.
    Spectrom. 1999, 14 1143-1153.
    114. Hobbs, A. L. A., J. R., Trace elemental analysis of automotive paints by laser
    ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).
    Analytical and bioanalytical chemistry 2003, 376, 1265-71.
    115. Park, Y.; Lee, Y.-C.; Shin, W. S.; Choi, S.-J., Removal of cobalt, strontium and
    cesium from radioactive laundry wastewater by ammonium
    molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering
    Journal 2010, 162, (2), 685-695.
    116. Chang, E. E.; Yang, S.-Y.; Huang, C.-P.; Liang, C.-H.; Chiang, P.-C., Assessing
    the fouling mechanisms of high-pressure nanofiltration membrane using the
    modified Hermia model and the resistance-in-series model. Separation and
    Purification Technology 2011, 79, (3), 329-336.
    117. Ho, J.; Sung, S., Effects of solid concentrations and cross-flow hydrodynamics
    on microfiltration of anaerobic sludge. Journal of Membrane Science 2009, 345,
    (1-2), 142-147.
    118. Mata, J.; Varade, D.; Bahadur, P., Aggregation behavior of quaternary salt based
    cationic surfactants. Thermochimica Acta 2005, 428, (1-2), 147-155.
    119. Sanderson, R.; Jianxin Li; Hallbauer, D. K.; Sikde, S. K., Fourier wavelets from
    ultrasonic spectra: a new approach for detecting the onset of fouling during
    microfiltration of paper mill effluent. Environ. Sci. Technol. 2005, 39,
    7299-7305.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE