研究生: |
賴昀立 Lai, Yun Li |
---|---|
論文名稱: |
介電泳生醫微流道應用於體外授精 Dielectrophoretic microfluidic device for In Vitro Fertilization |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 陳致真 Chen, Chih-chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 微流體晶片 、卵母細胞 、精蟲 、介電泳 、體外受精 |
外文關鍵詞: | Microfluid chip, Oocyte, Sperm, Dielectrophoretic, IVF |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為一結合流力聚焦生成液珠以及介電泳力之生醫晶片,並使用聚二甲基矽(PDMS)製作其主要結構,具有製作簡單、防止汙染風險、降低細胞培養成本且具生物相容性等特性。本晶片利用正介電泳力捕捉卵母細胞以及具有活動力的精子,使卵母細胞周圍增加精子濃度。電極為藉由蝕刻氧化铟锡(ITO)所得出的平行結構。接著,利用兩液相流體分層將小鼠卵母細胞包覆於液珠內,以利於體外受精(In Vitro Fertilization, IVF)的細胞培育。包覆受精卵的液珠可透過改變介電泳緩衝液及培養油的流率控制體積大小。
本研究在低精卵比(500及2000)的狀況之下,晶片組較傳統體外組有較高的授精率(約5%),且能有較高的比率(約20%)發育至囊胚期。在篩選目標液珠與空液珠的部分,本研究可達到100%的篩選率。
另外,本研究也探討傳統體外授精在培養方式上的比較,得出在小體積(8μl)的培養液珠中個別培養受精卵,於低精卵比的條件下具有較好的發育率,相較於大體積液珠培養具有更好的發育率,可多出約10~20%的機率發育至囊胚期。
In this study, we created a simple microfluidic platform that uses with in vitro fertilization (IVF) and avoided unexpected damage to oocytes due to frequent manipulation of the sperms and oocytes in traditional IVF operation. The device in this research could also be used to help reducing medium volumes, cell culture cost, evaporation problem and prevents contamination risk.
To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate the oocyte. The mouse oocytes are trapped by the positive dielectrophoretic (p-DEP) force at the ITO-glass electrodes. The ITO-glass electrodes chip was fabricated by the ITO-glass wet etching. And, the polydimethylsiloxane (PDMS) flow-focusing microfluidic device was used for micrometer-size microdroplets generation to make zygote contained. The volume of microdroplets can be controlled by adjusting the flow rates of both oil and DEP buffer. As a result, the fertility rate could be increased about 5% higher with DEP treated than traditional IVF and even more than 20% developed to blastocyst stage with lower sperm-oocyte ratio. The sorting rate could also achieve 100%. Furthermore, the research compared cultivation method in traditional way. The result shows that the development rate for small volume cultivation is about 10% higher than large volume cultivation.
[1] C. Eunpyo, K. Byungkyu, and P. Jungyul, "High-throughput microparticle separation using gradient traveling wave dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, p. 125014, 2009.
[2] B. E. Debs, R. Utharala, I. V. Balyasnikova, A. D. Griffiths, and C. A. Merten, "Functional single-cell hybridoma screening using droplet-based microfluidics," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 11570-11575, 07/02 2012.
[3] M. Najah, A. D. Griffiths, and M. Ryckelynck, "Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics," Analytical Chemistry, vol. 84, pp. 1202-1209, 2012.
[4] L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870-891, May 2013.
[5] A. Perro, C. l. Nicolet, J. Angly, S. b. Lecommandoux, J.-F. o. Le Meins, and A. Colin, "Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes," Langmuir, vol. 27, pp. 9034-9042, 2011/07/19 2010.
[6] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, 2006.
[7] K. Powell, "Fertility treatments: Seeds of doubt," Nature, vol. 422, pp. 656-658, 2003.
[8] 史帕, 劉怡伶, and D. L. Spar, 造人 : 生育科技的商業運作方式, 初版 ed. 臺北市: 商周出版 城邦文化發行, 2006.
[9] H. A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
[10] H. A. Pohl, "Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields," ed. Cambridge ;: Cambridge University Press, 1978.
[11] T. B. Jones, "Electromechanics of Particles " Cambridge University Press, pp. 34-81, 1995.
[12] W. Choi, J.-S. Kim, D.-H. Lee, K.-K. Lee, D.-B. Koo, and J.-K. Park, "Dielectrophoretic oocyte selection chip for in vitro fertilization," Biomedical Microdevices, vol. 10, pp. 337-345, 2008.
[13] G. Fuhr, T. Müller, V. Baukloh, and K. Lucas, "High-frequency electric field trapping of individual human spermatozoa," Human Reproduction, vol. 13, pp. 136-141, January 1, 1998 1998.
[14] J. Berthier, "Microdrops and Digital Microfluidics," ed: William Andrew Publishing, 2008.
[15] M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, "Droplet microfluidics for high-throughput biological assays," Lab on a Chip, vol. 12, pp. 2146-2155, 2012.
[16] K. Wang, Y. C. Lu, J. H. Xu, J. Tan, and G. S. Luo, "Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices," AIChE Journal, vol. 57, pp. 299-306, 2011.
[17] L. Schmid and T. Franke, "Acoustic modulation of droplet size in a T-junction," Applied Physics Letters, vol. 104, p. 133501, 2014.
[18] A. P. Lee and Y. C. Tan, "Microfluidic production of monodispersed submicron emulsion through filtration and sorting of satellite drops," ed: Google Patents, 2011.
[19] T. Kawakatsu, Y. Kikuchi, and M. Nakajima, "Regular-sized cell creation in microchannel emulsification by visual microprocessing method," Journal of the American Oil Chemists' Society, vol. 74, pp. 317-321, 1997.
[20] P. B. Umbanhowar, V. Prasad, and D. A. Weitz, "Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream," Langmuir, vol. 16, pp. 347-351, 2000.
[21] P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, "Formation of monodisperse bubbles in a microfluidic flow-focusing device," Applied Physics Letters, vol. 85, pp. 2649-2651, 2004.
[22] K. Hettiarachchi, E. Talu, M. L. Longo, P. A. Dayton, and A. P. Lee, "On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging," Lab on a Chip, vol. 7, pp. 463-468, 2007.
[23] E. Miller, M. Rotea, and J. P. Rothstein, "Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets," Lab on a Chip, vol. 10, pp. 1293-1301, 2010.
[24] Z. Gagnon, J. Mazur, and H. C. Chang, "Integrated AC electrokinetic cell separation in a closed-loop device," Lab on a Chip, vol. 10, pp. 718-726, 2010.
[25] C. P. Jen and T. W. Chen, "Trapping of cells by insulator-based dielectrophoresis using open-top microstructures," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 1141-1148, Aug 2009.
[26] C. P. Jen and T. W. Chen, "Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures," Biomedical Microdevices, vol. 11, pp. 597-607, 2009.
[27] C. P. Jen, C. T. Huang, and H. Y. Shih, "Hydrodynamic separation of cells utilizing insulator-based dielectrophoresis," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 16, pp. 1097-1104, 2010.
[28] C. P. Jen, C. T. Huang, and C. H. Weng, "Focusing of biological cells utilizing negative dielectrophoretic force generated by insulating structures," Microelectronic Engineering, vol. 87, pp. 773-777, 2010.
[29] R. C. Gallo-Villanueva, N. M. Jesus-Perez, J. I. Martinez-Lopez, A. Pacheco, and B. H. Lapizco-Encinas, "Assessment of microalgae viability employing insulator-based dielectrophoresis," Microfluidics and Nanofluidics, vol. 10, pp. 1305-1315, 2011.
[30] C. Huang, S. M. Santana, H. Liu, N. H. Bander, B. G. Hawkins, and B. J. Kirby, "Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture," Electrophoresis, vol. 34, pp. 2970-2979, 2013.
[31] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, "Droplet based microfluidics," Rep Prog Phys, vol. 75, p. 016601, 2012.
[32] J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, et al., "Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms," Chem Biol, vol. 15, pp. 427-37, 2008.
[33] T. M. Tran, F. Lan, C. S. Thompson, and A. R. Abate, "From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology," Journal of Physics D-Applied Physics, vol. 46, p. 114004, 2013.
[34] Y. T. Chen, W. C. Chang, W. F. Fang, S. C. Ting, D. J. Yao, and J. T. Yang, "Fission and fusion of droplets in a 3-D crossing microstructure," Microfluidics and Nanofluidics, vol. 13, pp. 239-247, 2012.
[35] S.-C. Lin, P.-W. Yen, C.-C. Peng, and Y.-C. Tung, "Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing," Lab on a Chip, vol. 12, pp. 3135-3141, 2012.
[36] F. Guo, M. I. Lapsley, A. A. Nawaz, Y. Zhao, S.-C. S. Lin, Y. Chen, et al., "A Droplet-Based, Optofluidic Device for High-Throughput, Quantitative Bioanalysis," Analytical Chemistry, vol. 84, pp. 10745-10749, 2012.
[37] L.-H. Hung, S.-Y. Teh, J. Jester, and A. P. Lee, "PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches," Lab on a Chip, vol. 10, pp. 1820-1825, 2010.
[38] H. A. Stone, S. L. Anna, N. Bontoux, D. R. Link, D. A. Weitz, I. Gitlin, et al., "Method and apparatus for fluid dispersion," ed: Google Patents, 2012.
[39] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using "flow focusing" in microchannels," Applied Physics Letters, vol. 82, pp. 364-366, 2003.
[40] T. Hsin-Yao, Y. Da-Jeng, T. Chang-Hung, L. Chin-Jung, and H. Hong-Yuan, "Using control microfluidic system to enhance the sperm motility sorting efficiency," in Nano/Molecular Medicine and Engineering (NANOMED), IEEE 6th International Conference on, 2012, pp. 47-50, 2012.
[41] H.-Y. Huang, T.-L. Wu, H.-R. Huang, C.-J. Li, H.-T. Fu, Y.-K. Soong, et al., "Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel," Journal of Laboratory Automation, vol. 19, pp. 91-99, February 1, 2014.
[42] R. R. Henkel and W.-B. Schill, "Sperm preparation for ART," Reproductive Biology and Endocrinology, vol. 1, p. 22, 2003.
[43] W. Jason, C. Yaokuang, B. Kimberly, S. Gary, T. Shuichi, and L. Joerg, "A surface-modified sperm sorting device with long-term stability," Biomedical Microdevices, vol. 8, pp. 99-107, 2006.
[44] Y. N. Lin, P. C. Chen, R. G. Wu, L. C. Pan, and F. G. Tseng, "High-throughput sperm sorting in a micro diffuser type fluidic system," in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on, pp. 1153-1156, 2013.
[45] C. Leung, L. Zhe, N. Esfandiari, R. F. Casper, and S. Yu, "Automated Sperm Immobilization for Intracytoplasmic Sperm Injection," Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 935-942, 2011.
[46] B. Shao, L. Shi, J. Nascimento, E. Botvinick, M. Ozkan, M. Berns, et al., "High-throughput sorting and analysis of human sperm with a ring-shaped laser trap," Biomedical Microdevices, vol. 9, pp. 361-369, 2007.
[47] B. Cho, T. Schuster, X. Zhu, D. Chang, G. D. Smith, and S. Takayama, "A microfluidic device for separating motile sperm from nonmotile sperm via inter-streamline crossings," in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, pp. 156-159, 2002.
[48] E. Rosales-Cruzaley, P. A. Cota-Elizondo, D. Sánchez, and B. Lapizco-Encinas, "Sperm cells manipulation employing dielectrophoresis," Bioprocess and Biosystems Engineering, vol. 36, pp. 1353-1362, 2013.
[49] W. Choi, J. S. Kim, D. H. Lee, K. K. Lee, D. B. Koo, and J. K. Park, "Dielectrophoretic oocyte selection chip for in vitro fertilization," Biomedical Microdevices, vol. 10, pp. 337-345, 2008.
[50] J. K. Valley, M. Garcia, P. Swinton, S. Neale, H. Hsan-Yin, A. Jamshidi, et al., "Optoelectronic Tweezers for quantitative assessment of embryo developmental stage," in Micro Electro Mechanical Systems (MEMS), IEEE 23rd International Conference on, pp. 943-946, 2010.
[51] J. K. Valley, P. Swinton, W. J. Boscardin, T. F. Lue, P. F. Rinaudo, M. C. Wu, et al., "Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis," PLoS ONE, vol. 5, p. e10160, 2010.
[52] S. G. Clark, K. Haubert, D. J. Beebe, C. E. Ferguson, and M. B. Wheeler, "Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization," Lab on a Chip, vol. 5, pp. 1229-1232, 2005.
[53] C. Han, Q. Zhang, R. Ma, L. Xie, T. Qiu, L. Wang, et al., "Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device," Lab on a Chip, vol. 10, pp. 2848-2854, 2010.
[54] D. R. Albrecht, G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia, "Probing the role of multicellular organization in three-dimensional microenvironments," Nat Meth, vol. 3, pp. 369-375, 2006.
[55] P. B. Pedro, S. E. Zhu, N. Makino, T. Sakurai, K. Edashige, and M. Kasai, "Effects of Hypotonic Stress on the Survival of Mouse Oocytes and Embryos at Various Stages," Cryobiology, vol. 35, pp. 150-158, 1997.
[56] S. F. Mullen, Rosenbaum, and J. K. Critser, "The effect of osmotic stress on the cell volume, metaphase II spindle and developmental potential of in vitro matured porcine oocytes," Cryobiology., vol. 54, pp. 281-289, 2007.
[57] J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts of Chemical Research, vol. 35, pp. 491-499, 2002.
[58] R. S. Suh, X. Zhu, N. Phadke, D. A. Ohl, S. Takayama, and G. D. Smith, "IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm," Human Reproduction, vol. 21, pp. 477-483, 2006.
[59] J. H. Koschwanez, R. H. Carlson, and D. R. Meldrum, "Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent," vol. 4, p.4572, 2009
[60] B. E. Slentz, N. A. Penner, and F. E. Regnier, "Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization," Journal of Chromatography A, vol. 948, pp. 225-233, 2002.
[61] J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, et al., "Controlled encapsulation of single-cells into monodisperse picolitre drops," Lab on a Chip, vol. 8, p. 1262, 2008.
[62] J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, et al., "Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms," Chemistry & Biology, vol. 15, p. 427-437, 2008.
[63] I. J. Chen and E. Lindner, "The Stability of Radio-Frequency Plasma-Treated Polydimethylsiloxane Surfaces," Langmuir, vol. 23, pp. 3118-3122, 2007.
[64] 高偉倫, "介電泳微流道生醫晶片應用於提高小鼠之體外受精率," 碩士論文, 國立清華大學, 新竹, 2014.
[65] Y. C. Tan, V. Cristini, and A. P. Lee, "Monodispersed microfluidic droplet generation by shear focusing microfluidic device," Sensors and Actuators B-Chemical, vol. 114, pp. 350-356, 2006.
[66] L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, and A. P. Lee, "Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis," Lab on a Chip, vol. 6, pp. 174-178, 2006.
[67] C. Teepakorn, K. Fiaty, and C. Charcosset, "Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation," Processes, vol. 4, p. 31, 2016.
[68] D. K. Gardner and M. Lane, "Amino-Acids and Ammonium Regulate Mouse Embryo Development in Culture," Biology of Reproduction, vol. 48, pp. 377-385, 1993.
[69] Y. Kato and Y. Tsunoda, "Effects of the culture density of mouse zygotes on the development in vitro and in vivo," Theriogenology, vol. 41, pp. 1315-1322, 1994.
[70] P. J. Stokes, L. R. Abeydeera, and H. J. Leese, "Development of porcine embryos in vivo and in vitro; evidence for embryo ‘cross talk’ in vitro," Developmental Biology, vol. 284, pp. 62-71, 2005.
[71] L. Gianaroli, M. C. Magli, A. P. Ferraretti, A. Fiorentino, E. Tosti, S. Panzella, et al., "Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate," Human Reproduction, vol. 11, pp. 166-171, January 1, 1996.
[72] X. D. Zhang, J. X. Liu, W. W. Liu, Y. Gao, W. Han, S. Xiong, et al., "Time of insemination culture and outcomes of in vitro fertilization: a systematic review and meta-analysis," Human Reproduction Update, vol. 19, pp. 685-695, November 1, 2013.
[73] M. Dirnfeld, D. Bider, M. Koifman, I. Calderon, and H. Abramovici, "Shortened exposure of oocytes to spermatozoa improves in-vitro fertilization outcome: a prospective, randomized, controlled study," Human Reproduction, vol. 14, pp. 2562-2564, October 1, 1999.
[74] S. Coskun, G. L. Roca, A. M. Elnour, H. A. Mayman, J. M. G., Hollanders, et al., "Effects of Reducing Insemination Time in Human In Vitro Fertilization and Embryo Development by Using Sibling Oocytes," Journal of Assist Reprod Genet, vol. 15, pp. 605-608, 1998.
[75] S. Agarwal, S. Sharma, V. Agrawal, and N. Roy, "Caloric restriction augments ROS defense in S-cerevisiae, by a Sir2p independent mechanism," Free Radical Research, vol. 39, pp. 55-62, 2005.
[76] E. L. Gordon, J. P. Twigg, N. Fulton, P. A. Milne, R. J. Aitken, and D. S. Irvine, "DNA integrity in human spermatozoa: Relationships with semen quality," Journal of Reproduction and Fertility Abstract Series, pp. 45-46, 1998.
[77] N. Saiz and B. Plusa, "Early cell fate decisions in the mouse embryo," Reproduction, vol. 145, pp. R65-80, 2013.
[78] R. Sasaki, T. Nakayama, and T. Kato, "Microelectrophoretic Analysis of Changes in Protein Expression Patterns in Mouse Oocytes and Preimplantation Embryos," Biology of Reproduction, vol. 60, pp. 1410-1418, June 1, 1999.
[79] M. A. Unger, "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography," Science, vol. 288, pp. 113-116, 2000.
[80] H. W. Wu, Y. C. Huang, C. L. Wu, and G. B. Lee, "Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery," Microfluidics and Nanofluidics, vol. 7, pp. 45-56, 2009.
[81] K. Niwa and M. C. Chang, "Optimal Sperm Concerntration and Minimal Number of Spermatozoa for Fertilization In Vitro of Rat Eggs," Journal of Reproduction and Fertility, vol. 40, pp. 471-474, October 1, 1974.
[82] L. R. FRASER and L. M. DRURY, "The Relationship Between Sperm Concentration and Fertilization in vitro of Mouse Eggs," Biology of Reproduction, vol. 13, pp. 513-518, December 1, 1975.
[83] A.K.Siddiquey and J.Cohen, "In-vitro fertilization in the mouse and the relevance of different sperm/egg concentrations and volumes," Journal of Reproduction and Infertility, vol. 66, pp. 237-242, 1982.
[84] J. Melin, A. Lee, K. Foygel, D. E. Leong, S. R. Quake, and M. W. M. Yao, "In vitro embryo culture in defined, sub-microliter volumes," Developmental Dynamics, vol. 238, pp. 950-955, 2009.
[85] S. H. Jin, H.-H. Jeong, B. Lee, S. S. Lee, and C.-S. Lee, "A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval," Lab on a Chip, vol. 15, pp. 3677-3686, 2015.