簡易檢索 / 詳目顯示

研究生: 李冠勳
Li, Kuan-Hsun
論文名稱: 聚苯胺摻雜貴金屬奈米顆粒的製備於有機薄膜電晶體之應用
Preparation of Polyaniline Containing Nanoparticles of Noble Metals for Organic Thin Flim Transistors
指導教授: 王本誠
Wang, Pen-Cheng
口試委員: 張廖貴術
許瑤真
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 聚苯胺貴金屬摻雜有機薄膜電晶體
外文關鍵詞: Polyaniline, Nobel Metal, OTFT
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    有機薄膜電晶體(Organic Thin Film Transistor ,OTFT)擁有製程簡易、製程低溫、結構簡單等等的優勢。若是製作於軟性基板上,其可彎曲的特性更是可以用來驅動各式各樣的軟性顯示器。

    本研究藉由化學氧化聚合法的方式,在鹽酸(HCl)水溶液中,以過硫酸銨((NH4)2S2O8,APS)為氧化劑,苯胺(aniline)為單體,聚合成具有導電特性的聚苯胺,並經由氨水(NH4OH)作去摻雜的處理,使此種特性的高分子材料擁有當做有機半導體材料的潛力。

    過程中我們再藉由還原金屬奈米顆粒於去摻雜的聚苯胺上去改變材料的導電特性,表面形貌及載子種類,我們嘗試摻雜的金屬包含:金(Au)、鉑(Pt)、鈀(Pd)、銠(Rh)、釕(Ru)以及銀(Ag),並藉由四點探針(Four-point probe)、場發射電子顯微鏡(Field Emission Scanning Electron Microscope ,FESEM)、紫外光-紅外光-近紅外光光譜儀(UV-VIS-NIR Spectrometer)、傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer ,FTIR)等儀器去做分析。

    最後我們嘗試將多種不同金屬摻雜的聚苯胺當作有機半導體材料,去製做有機薄膜電晶體(Organic Thin Film Transistor ,OTFT),並搭配著兩種電極:鈦(Ti)跟金(Au),去做一系列的量測與探討。


    目錄 摘要……………………………………………………………………………………………i Abstract………………………………………………………………………………..………ii 致謝……………………………………………………………………………………...……iii 目錄…………………………………………………………………………………..………..iv 表目錄…………………………………………………………………………………………vi 圖目錄…………………………………………………………………………………..……vii 第一章 緒論與文獻回顧……………………………………………………...………………1 1.1前言……………………………………………………………………….……..…………1 1.2導電高分子簡介……………………………………………………………...……………1 1.3導電高分子-聚苯胺……………………………………………………………………..…4 1.4有機半導體………………………………………………………………………………...8 1.5有機薄膜電晶體…………………………………………………………………………...8 1.6研究目的……………………………………………………………………………….…11 第二章 儀器設備………………………………………………………………………….…12 2.1發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope ,FESEM)…….12 2.2四點探針量測儀(Four-Point Probe)……………………………………………………...14 2.3光譜分析……………………………………………….…………………………………15 2.3.1紫外光-紅外光-近紅外光光譜儀(UV-VIS-NIR Spectrometer) …........................17 2.3.2傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer ,FTIR)…...19 第三章 實驗內容…………………………………………………………………………….21 3.1 實驗使用藥品……………………………………………………………………………21 3.2 實驗方法…………………………………………………………………………………22 3.3 有機高分子材料製備……………………………………………………………………23 3.3.1 化學氧化聚合法聚合苯胺單體……………………………………………….…23 3.3.2 聚苯胺的去摻雜………………………………………………………………….25 3.3.3 金屬奈米粒子的摻雜…………………………………………………………….25 3.4 有機薄膜電晶體的製作…………………………………………………………………26 第四章 實驗結果與討論…………………………………………………………………….28 4.1 摻雜貴重金屬奈米顆粒的聚苯胺之特性分析…………………………………………28 4.1.1導電性量測與表面形態觀測……………………………………………………..28 4.1.2聚苯胺薄膜之傅立葉光譜分析…………………………………………………..38 4.1.3紫外光-紅外光-近紅外光光譜分析………………………………………………42 4.2 有機薄膜電晶體之電性量測……………………………………………………………47 4.2.1鈦電極製作有機薄膜電晶體…………………………………..…………………47 4.2.2金電極製作有機薄膜電晶體…………………………………..…………………56 第五章 結論……………………………………………………….…………………………65 參考文獻…………………………………………………………...…………………………66

    參考文獻

    1. Macdiarmid, A.G., A.J. Heeger, and H. Shirakawa, ORGANIC METALS AND SEMICONDUCTORS - POLYACETYLENE, (CH)X AND ITS DERIVATIVES. Abstracts of Papers of the American Chemical Society, 1979(APR): p. 214-214.
    2. Faraggi, E.Z., et al., Microfabrication of an electroluminescent polymer light emitting diode pixel array. Synthetic Metals, 1997. 85(1–3): p. 1187-1190.
    3. Smela, E., et al., Planar microfabricated polymer light-emitting diodes. Semiconductor Science and Technology, 1998. 13(4): p. 433-439.
    4. Zhang, Y., et al., A modified Nafion membrane with extremely low methanol permeability via surface coating of sulfonated organic silica. Chemical Communications, 2012. 48(23): p. 2870-2872.
    5. Battirola, L.C., et al., Improvement on direct ethanol fuel cell performance by using doped-Nafion (R) 117 membranes with Pt and Pt-Ru nanoparticles. International Journal of Hydrogen Energy, 2013. 38(27): p. 12060-12068.
    6. Fernandes, D.M., et al., Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. Rsc Advances, 2013. 3(37): p. 16697-16707.
    7. De Paoli, M.A., et al., All polymeric solid state electrochromic devices. Electrochimica Acta, 1999. 44(18): p. 2983-2991.
    8. Kawata, K., et al., Preparation of Polyaniline/TiO2 Nanocomposite Film with Good Adhesion Behavior for Dye-Sensitized Solar Cell Application. Polymer Composites, 2013. 34(11): p. 1884-1891.
    9. Li, Q., et al., A simple approach of enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells by integrating conducting polyaniline into electrical insulating gel electrolyte. Journal of Power Sources, 2014. 245: p. 468-474.
    10. Larmat, F., J.R. Reynolds, and Y.J. Qiu, Polypyrrole as a solid electrolyte for tantalum capacitors. Synthetic Metals, 1996. 79(3): p. 229-233.
    11. Pan, T., Intrinsically Conducting Polymer-Based Heavy-Duty and Environmentally Friendly Coating System for Corrosion Protection of Structural Steels. Spectroscopy Letters, 2013. 46(4): p. 268-276.
    12. Baldissera, A.F. and C.A. Ferreira, Coatings based on electronic conducting polymers for corrosion protection of metals. Progress in Organic Coatings, 2012. 75(3): p. 241-247.
    13. Hao, B., et al., Electrical and microwave absorbing properties of polypyrrole synthesized by optimum strategy. Journal of Applied Polymer Science, 2013. 127(6): p. 4273-4279.
    14. Geetha, S. and D.C. Trivedi, A new route to synthesize high degree polythiophene in a room temperature melt medium. Synthetic Metals, 2005. 155(1): p. 232-239.
    15. Jelmy, E.J., et al., Optimization of the conductivity and yield of chemically synthesized polyaniline using a design of experiments. Journal of Applied Polymer Science, 2013. 130(2): p. 1047-1057.
    16. Letheby, H., On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society, 1862. 15: p. 161.
    17. Grabowsk.Zr, J. Jacq, and Josefowi.M, DISCUSSION OF JACQ,J. Electrochimica Acta, 1968. 13(5): p. 1128-&.
    18. Josefowi.M, et al., DISCUSSION OF MANECKE,G. Electrochimica Acta, 1968. 13(5): p. 1107-&.
    19. Leach, S., et al., DISCUSSION OF MAGAT M. Journal De Chimie Physique, 1966. 63(1): p. 148-&.
    20. Macdiarmid, A.G., POLYANILINE - AN INEXPENSIVE ENVIRONMENT - STABLE CONDUCTING POLYMER. Journal of Metals, 1985. 37(11): p. A27-A27.
    21. Macdiarmid, A.G., et al., POLYANILINE - PROTONIC ACID DOPING TO THE METALLIC REGIME. Molecular Crystals and Liquid Crystals, 1985. 125(1-4): p. 309-318.
    22. Chiang, J.C. and A.G. Macdiarmid, POLYANILINE - PROTONIC ACID DOPING OF THE EMERALDINE FORM TO THE METALLIC REGIME. Synthetic Metals, 1986. 13(1-3): p. 193-205.
    23. Han, C.C. and R.L. Elsenbaumer, PROTONIC ACIDS - GENERALLY APPLICABLE DOPANTS FOR CONDUCTING POLYMERS. Synthetic Metals, 1989. 30(1): p. 123-131.
    24. Wang, P.-C., et al., Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media. Reactive & Functional Polymers, 2009. 69(4): p. 217-223.
    25. Schillinger, E.-K., et al., Oligothiophene Versus beta-Sheet Peptide: Synthesis and Self-Assembly of an Organic Semiconductor-Peptide Hybrid. Advanced Materials, 2009. 21(16): p. 1562-+.
    26. Virkar, A., et al., Oligothiophene based organic semiconductors with cross-linkable benzophenone moieties. Synthetic Metals, 2008. 158(21-24): p. 958-963.
    27. Liu, P., et al., Novel polymer semiconductor compound used in thin film transistor, has polythiophene-containing structure, Xerox Corp.
    28. Kono, H., T. Sunaga, and K. Nakayama, Organic semiconductor material for organic semiconductor layer of organic transistor, contains polyacetylene group conjugated polymer having specific structural units derived from cyclohexene and cyclopentene, Mitsui Chem Inc.
    29. Schulz, H. and K.H. Thiemann, Crystal structure refinement of AlN and GaN. Solid State Communications, 1977. 23(11): p. 815-819.
    30. Wang, P.-C. and A.G. MacDiarmid, Vapor phase secondary doping of polyaniline (emeraldine salt) thin films with o-chlorophenol investigated by UV-VIS-NIR: Effects of primary dopants, substrate surfaces, and pre-treatments of organic vapors. Reactive & Functional Polymers, 2008. 68(1): p. 201-207.
    31. Huang, W.S., B.D. Humphrey, and A.G. Macdiarmid, POLYANILINE, A NOVEL CONDUCTING POLYMER - MORPHOLOGY AND CHEMISTRY OF ITS OXIDATION AND REDUCTION IN AQUEOUS-ELECTROLYTES. Journal of the Chemical Society-Faraday Transactions I, 1986. 82: p. 2385-&.
    32. Huang, J. and R.B. Kaner, The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006(4): p. 367.
    33. Delvaux, M., et al., Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules. Synthetic Metals, 2000. 113(3): p. 275-280.
    34. Yuan, X.Y., et al., Autocatalyzed template fabrication and magnetic study of CoøFeøP nanowire arrays. Solid State Sciences, 2004. 6(7): p. 735-738.
    35. Zhao, W.-B., J.-J. Zhu, and H.-Y. Chen, Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template. Journal of Crystal Growth, 2003. 258(1-2): p. 176-180.
    36. Venancio, E.C., P.-C. Wang, and A.G. MacDiarmid, The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 2006. 156(5–6): p. 357-369.
    37. de Albuquerque, J.E., et al., Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synthetic Metals, 2004. 146(1): p. 1-10.
    38. Contreras-Caceres, R., et al., Polymers as Templates for Au and Au@Ag Bimetallic Nanorods: UV-Vis and Surface Enhanced Raman Spectroscopy. Chemistry of Materials, 2013. 25(2): p. 158-169.
    39. Yliniemi, K., et al., Combined in situ electrochemical impedance spectroscopy-UV/Vis and AFM studies of Ag nanoparticle stability in perfluorinated films. Materials Chemistry and Physics, 2012. 134(1): p. 302-308.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE