簡易檢索 / 詳目顯示

研究生: 蕭章道
Hsiao, Chang-Tao
論文名稱: 以化學氣相沉積聚合法製備共軛高分子和無機/有機複合材料及其光電性質之研究
The Optoelectronic Properties of Conjugated Polymers and Inorganic/ Organic Hybrid Materials Prepared with Chemical Vapor Deposition Polymerization Processes
指導教授: 呂世源
Lu, Shih-Yuan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 126
中文關鍵詞: 化學氣相沉積聚合法共軛高分子無機/有機複合材料有機發光元件太陽能電池
外文關鍵詞: CVDP, Conjugated Polymer, Inorganic/ Organic Hybrid Materials, OLED, Solar Cell
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    共軛高分子因其獨特的光電性質,所以在過去幾十年來一直被廣泛的研究。其應用範圍除了我門所熟知的光致發光元件及顯示器技術外,在顯示器背光源、一般照明、光伏元件方面也持續被探討與研究。
    本研究嘗試以氣相法製備共軛高分子、無機/有機混合系統及熱解碳材(pyrolytic carbon),除進行材料分析及成膜形態(morphology)之觀察,最重要的是其與光電性質的關聯性,以期能在瞭解其物性、化性與光電性質後,將此材料運用於共軛高分子光電元件上。本研究共分為三大主題:
    (一) 以化學氣相沉積聚合(CVDP)法製備共軛高分子薄膜::我們以SPR法合成液相前驅物聚電解質(Poly(xylylene tetrahydrothiophenium chloride, PXT)溶液,並以核磁共震質譜儀(NMR)及霍式轉換紅外線光譜儀 (FTIR)分析其中間物及產物的組成;此液相前驅物可採用旋轉塗佈法塗佈於基材上經熱轉換後得到PPV薄膜。此外,我們也以化學氣相沉積聚合法(chemical vapor phase deposition polymerization, CVDP)法製備PPV薄膜,並比較二者間光電性質之差異。發現以化學氣相沉積法製備的薄膜其量子產率(quantum yield)較低,此現象可能與膜的緻密度所引發的發光中心濃度淬熄(concentration quench)有關。另外我們也成功的以CVDP法製備出共軛高分子PPP,並以簡單的基材表面親疏水性處理來控製高分子鏈堆疊(chain conformation)與成膜形態(film morphology),進而控制其光電行為。
    (二) 以化學氣相沉積聚合(CVDP)法製備有機/無機混合系統:我們以CVDP法成功製備出Zn/PPV金屬/高分子錯合物,除了證實氣相法也能進行化學修飾將金屬原子接於主鏈上,也大幅改善了量子產率近七十倍。此外我們以共進料(co-fed)CVDP法製備出有機/無機半導體奈米複合膜PPV-CdS及PPV-ZnS,藉由掺雜物(inclusion)本身的物性及成膜形態控制(morphology control),可以操控複合膜之光電性質。
    (三) 以化學氣相沉積(CVD)法製備熱解碳(pyrolytic carbon)膜及於DSSC上之應用:本實驗以CVD法將熱解碳直接沉積於石英基材上而製備出小孔隙(micropore)、親水性、金屬光澤、鏡面反射、具觸媒活性及導電性的碳膜,而直接應用在DSSC的對電極上。我們比較材料的比表面積、孔徑分佈、片電阻及晶相,發現觸媒活性為主要影響光轉換效率的主因,以循環伏安法及電化學阻抗分析更確認觸媒活性之重要性。雖然熱解碳經熱處理而提升了光轉換效率,但與 Pt對電極仍有差距。雖然熱解碳光轉換效率不如Pt,但改善空間很大,因此頗具開發潛力。
    由研究結果顯示,發光波長、發光強度及效率受到共軛高分子分子鏈堆疊(chain conformation)與成膜形態(film morphology)、摻雜物種類、尺寸及形態的影響;在對電極的研究上,材質的觸媒活性為影響效率的主因,因此具有導電性、觸媒活性且價格便宜的熱解碳相當具有開發潛力,將對DSSC的應用有很大的助益。


    Abstract
    In the past several decades, conjugated polymers have been extensively and intensively investigated because of their unique electroluminescent properties. The most well known application of these materials is the organic light emitting diodes. It is not only used in display technology, but also applied in lighting, such as backlight module of TFT-LCD, general light source, and organic solar cells.
    In this thesis, we investigated the gas route preparation and optoelectronic properties of PPV, inorganic/organic hybrid system, and pyrolytic carbon. The relationship between the structure and optoelectronic properties has been investigated. The three main topics of this research are:
    1) Conjugated polymer thin film preparation with CVDP (chemical vapor phase deposition polymerization) methods︰The SPR method was employed to synthesize PXT to be a precursor of a liquid phase route. Both FTIR and NMR spectra were obtained to identify the composition of the intermediate and final product in the reaction. The precursor, PXT, was cast on the substrate via spin coating, and formed PPV films after thermal convertion. Besides, we used a CVDP method to prepare PPV films and compared the PL quantum yields with those from the PPV films prepared by spin coating. The results showed that the PPV films prepared by the CVD method exhibited lower PL quantum yields. It may be caused by the dense structure of the CVD films, leading to concentration quench of the luminescent centers. We also used the same method to prepare poly(p-phenylene) films in one-step successfully. The polymer chain conformation of the film can be effectively adjusted through a simple surface treatment of the substrate. The variations in film morphology induced by the substrate characteristics led to significant changes in the optoelectronic properties of the film.
    2) Organic/ Inorganic hybrid system preparation with CVDP method: The highly photoluminescent Zn/PPV complex films were successfully prepared with a direct complexing of Zn to PPV in a facile CVDP process for the first time. A two order of magnitude improvement in PL quantum yield was achieved through this metal complexing. The present approach can be readily extended to other photoluminescent metal-polymer systems. Besides, a novel co-fed chemical vapor deposition polymerization process was developed to successfully fabricate PPV-CdS and PPV-ZnS nanohybrids. The morphology of the nanohybrids can be effectively tuned through a simple control of the relative precursor concentration in the deposition system. Markedly different nanohybrid morphologies, ranging from well dispersed nanocrystals to continuous bulk heterostructures, were realized. The variations in morphology corresponded to according variations in optoelectronic properties attributable to the the p-n interfaces formation.
    3) A pyrolytic carbon thin layer deposited on quartz substrate serving as a counter electrode for dye-sensitized solar cells: The chemical vapor deposition (CVD) pyrolytic carbon thin layer deposited on quartz substrates from biphenyl ring precursor monomer 4,4'-bis-chloromethyl-1,1'-biphenyl and served as a CE for DSSC applications was investigated. The material possesses metal-like, hydrophilic, microporous, conductive, and catalytic properties. We demonstrated that the catalytic properties with the CV and EIS methods. Although the catalytic activity was less than that of the traditional Pt counter electrode, the pyrolytic carbon material has a room for improvement and may potentially replace the noble metal electrode in DSSC applications.
    From the present study, the conjugated polymer’s chain conformation, film morphology, dimension, and dopant were found to affect the luminescence position, strength, and efficiency. As for the new carbon material for the DSSC applications, the catalytic activities dominate the conversion efficiency.

    中文摘要 I ABSTRACT III 誌謝 VI 總目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 共軛高分子POLY(P-PHENYLENEVINYLENE)及其衍生物 3 1.3 共軛高分子之製備方法 8 1.3.1以液相法製備共軛高分子薄膜 8 1.3.2 以氣相法製備共軛高分子薄膜 9 1.4 研究動機、方向與論文架構 11 參考文獻 13 第二章 實驗內容 16 2.1 實驗藥品 16 2.2 製程設備 19 2.3 實驗器材 20 2.4 分析儀器 22 第三章 以化學氣相沉積聚合法製備共軛高分子POLY(P-PHENYLENEVINYLENE) (PPV)及POLY(P-PHENYLENE) (PPP) 26 3.1 前言 26 3.1.1 化學氣相沉積聚合法 26 3.1.2 poly(p-phenylenevinylene) (PPV) 27 3.1.3 poly(p-phenylene) (PPP) 27 3.2 實驗與方法 27 3.2.1 以SPR法合成PXT聚電解質 27 3.2.2 以CVDP法製備PPV薄膜 29 3.2.3以CVDP法製備PPP薄膜 30 3.3 結果與討論 31 3.3.1 以液相法及氣相法製備PPV薄膜及光電性質之比較 31 3.3.1.1液相法 31 3.3.1.2氣相法 33 3.3.1.3光電性質之比較 35 3.3.2 以氣相法製備藍光共軛高分子poly(p-phenylene):成膜形態與光電性質之關係 38 3.3.2.1分子結構鑑定 40 3.3.2.2成膜形態與光電性質之關係 42 3.4 結論 45 參考文獻 51 第四章 以氣相沉積聚合法製備金屬/共軛高分子錯合物ZINC/PPV 53 4.1 前言 53 4.2 實驗與方法 54 4.3 結果與討論 57 4.3.1 金屬/共軛高分子錯合物分子之鑑定 57 4.3.1.1紅外線吸收光譜(FTIR)與拉曼光譜(Raman spectrum) 57 4.3.1.2 固態核磁共振光譜(solid state NMR) 62 4.3.1.3 X光繞射圖譜(XRD) 62 4.3.1.4 成膜形態(TEM)、熱性質(TGA)與金屬含量分析(SEM-EDS) 63 4.3.2 金屬/共軛高分子錯合物之光電性質 67 4.3.2.1 螢光光譜(PL)與紫外光-可見光譜(UV-vis) 67 4.3.2.2 量子產率(Qs)與PL解析 67 4.3 結論 68 參考文獻 73 第五章 以氣相沉積聚合法製備有機-無機半導體複合材料 75 5.1 前言 75 5.2 實驗與方法 77 5.2.1 以化學氣相沉積聚合法製備PPV-CdS複合薄膜 77 5.2.2 以化學氣相沉積聚合法製備PPV-ZnS複合薄膜 77 5.3 結果與討論 79 5.3.1 複合膜之成長機制 79 5.3.2 PPV-CdS:複合膜形態控制與光電性質之關係 81 5.3.2.1成膜形態控制 81 5.3.2.2螢光(PL)及紫外光-可見光(UV-vis)光譜 82 5.3.2.3量子產率(Qs)與形態之關係 83 5.3.2.4電流密度與電壓之關係(J-V curve) 84 5.3.3 PPV-ZnS:複合膜形態控制與光電性質之關係 92 5.3.3.1成膜形態控制 92 5.3.3.2螢光(PL)及紫外光-可見光(UV-vis)光譜 93 5.3.3.3量子產率(Qs)與形態之關係 94 5.4 結論 94 參考文獻 99 第六章 以氣相法製備PYROLYTIC CARBON及其在染料敏化太陽能電池之應用 102 6.1 前言 102 6.1.1 染料敏化太陽能電池 102 6.1.2 熱解碳材(pyrolytic carbon) 103 6.2 實驗與方法 105 6.2.1 熱解碳及對電極之製備 105 6.2.2 DSSC之組裝 105 6.2.2.1 TiO2漿料的配製與塗佈 105 6.2.2.2 染料敏化太陽能電池的組裝 105 6.2.3 料敏化太陽能電池的特性量測 106 6.2.3.1 太陽光電轉換效率量測分析 106 6.2.3.2 循環伏安法(cyclic voltammetry)觸媒活性分析 107 6.3 結果與討論 108 6.3.1 pyrolysis carbon 之物性與化性 108 6.3.1.1 TGA熱分析 108 6.3.1.2 XRD晶相分析 108 6.3.1.3 HRTEM形態分析 108 6.3.1.4 BET表面分析 109 6.3.2 pyrolysis carbon對電極於染料敏化太陽能電池之應用 115 6.3.2.1 元件效率 115 6.3.2.2循環伏安法(cyclic voltammetry)及電化學阻抗分析(EIS, electrochemical impedance spectroscopy) 115 6.4 結論 116 參考文獻 121 第七章 總結與未來展望 123 個人簡歷 125

    CH1 參考文獻
    1) H. Hoegl, J. Phys. Chem., 1965, 69, 755
    2) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R H. Friend, P. L. Burns, and A. B. Holmes, Nature, 1990, 374, 539
    3) L. S. Huang and C. H. Chen, Mater. Sci. Eng. R-Rep., 2002, 39, 143
    4) Cristina Tanase, “Unified charge transport in disordered organic field-effect transistors and light-emitting diodes”, Ph.D. thesis, University of Groningen, The Netherlands, 2005
    5) A. J. Heeger, Synth. Met., 2002, 125, 23
    6) P. L. Burn, S. C. Lo and I. D. W. Samuel, Adv. Mater., 2007, 19, 1675
    7) J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 2007, 317, 222
    8) L. M. Chen, Z. Hong, G. Li and Yang Yang, Adv. Mater., 2009, 21, 1
    9) Ullrich Mitschke and Peter Bauerle, J. Mater. Chem., 2000, 10, 1471
    10) Liang-Sheng Yu, Hao-En Tseng, Hsin-Hung Lu and Show-An Chen, Applied Physics Letters, 2002, 81, 2014
    11) H. C. F. Martens, P. W. M. Blom and H. F. M. Schoo, Physical Review B, 2000, 61, 7489
    12) R. D. McCullough, R. D. Lowe, M. Jayaraman and D. L. Anderson, J. Org. Chem., 1993, 58, 904
    13) W. R. Salaneck et al., Conjugated Polymers and Related Materials, Oxford University Press, 1993
    14) D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982.
    15) B. S. Chuah, D.-H. Hwang, S. T. Kim, S. C. Moratti, A. B. Holmes, J. C. de Mello and R. H. Friend, Synth. Met., 1997, 91, 279
    16) N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holmes, Nature, 1993, 365, 628
    17) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 1999, 397, 121
    18) 顧鴻壽,光電有機電激發光顯示器技術及應用,新文京出版社, 2001
    19) R. A. Wessling, J Polym. Sci., Polym. Symp., 1985, 72, 55
    20) R. A. Wessling and R. G. Zimmermann, U. S. Pat. #3, 1968, 401, 152
    21) D. R. Gagnon, J. D. Capistran, F. E. Karasz, R. W. Lenz and S. Antoun, Polymer, 1987, 28, 567
    22) D. A. Halliday, P. L. Burn, R. H. Friend, D. D. C. Bradley and A. B. Holmes, Synth. Met., 1993, 55-57, 902
    23) K. D. Gourley, C. P. Lillya, J. R. Reynolds and J. C. W. Chien, Macromolecules, 1984, 17, 1025
    24) Z. Yang, I. Sokolik and F. E. Karasz, Macromolecules, 1993, 26, 1188
    25) Z. Bao, Y. Chen, R. Cai and L. Yu, Macromolecules, ,1993, 26, 5281
    26) B. R. Hsieh, W. C. Wan, Y. Yu, Y. Gao, T. E. Goodwin, S. A. Gonzalez and W. A. Feld, Macromolecules, 31 (1998) 631
    27) B. R. Hsieh, H. Antoniadis, D. C. Bland and W. A. Feld, Adv. Mater., 7 (1995) 36
    28) 鄭弘隆,PPV光電高分子與其摻合物系列之製程結構與光電性質探討,國立台灣大學材料科學與工程學研究所博士論文,中華民國八十九
    29) J. L. Forrest et al., Journal of Crystal Growth, 1995, 156, 91
    30) Marc Baldo, Miriam Deutsch, Paul Burrows,Herman Gossenberger, Michael Gerstenberg, Vladimir Ban and Stephen Forrest, Adv. Mater., 1998, 10, 1505
    31) M. Jandke, K. Kreger and P. Strohriegl, Synthetic Metals, 2000, 111-112, 221
    32) Schafer, A. Greiner, J. Pommerehne, W. Guss, H. Vestweber, H.Y. Tak, H. B&sler, C. Schmidt, G. Li.issem, B. Schartel, V. Stiimpflen, J.H. Wendorff , S. Spiegel and C. Mijller, and H. W. Spiess, Synthetic Metals, 1996, 82, 1
    33) J. W. Chang, H. Kim, J. K. Kim and B. K. Ju, Journal of the Korean Physical Society, 2003, 42, 268
    34) S. Kokane et al., Synthetic Metals, 2003, 132, 235
    35) K. M. Vaeth and K. F. Jensen, Appl. Phys. Lett., 1997, 71, 2091
    36) K. M. Vaeth and K. E .lensen, Adv. Mater., 1997, 9, 490
    37) W. Bowie and Y. P. Zhao, Surface Science, 2004, 563, 245

    CH3 參考文獻
    1) J. L. Forrest, Journal of Crystal Growth, 1995, 156, 91
    2) M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, Adv. Mater., 1998, 10, 1505
    3) M. Jandke, K. Kreger, P. Strohriegl, Synthetic Metals, 2000, 111–112, 221
    4) O. Schafer, A. Greiner, J. Pommerehne, W. Guss, H. Vestweber, H.Y. Tak, H. Bassler, C. Schmidt, G. Li.issem, B. Schartel, V. Stiimpflen, J.H. Wendorff , S. Spiegel, C. Mijller, and H. W. Spiess, Synthetic Metals, 1996, 82, 1
    5) J. W. Chang, H. K., J. K. Kim and B. K. Ju, Journal of the Korean Physical Society, 2003, 42, 268
    6) C. H. Lee, G. W. Kang, J. W. Jeon, W. J. Song and C. Seoul, Thin Solid Films, 2000, 363, 306
    7) L. M. Chen, Z. Hong, G, Li and Y. Yang, Adv. Mater., 2009, 21, 1
    8) H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell and D. D. C. Bradley, Appl. Phys. Lett., 2000, 77, 406
    9) Y. Suzuki, H. Kazama, N. Terasawa, Y. Naito, T. Yoshimura, Y. Arai and K. Asama, Proc. of SPIE, 2005, 5931, 59310G-1
    10) Y. Elkasabi, H. Y. Chen and J. Lahann, Adv. Mater., 2006, 18, 1521
    11) J. J. Senkevich, B. W. Woods, B. P. Carrow, R. D. Geil and B. R. Rogers, Chem. Vap. Deposition, 2006, 12, 285
    12) C. T. Hsiao and S. Y. Lu, Chem. Mater., 2008, 20, 2435
    13) C. T. Hsiao and S. Y. Lu, J. Mater. Chem., 2009, DOI: 10.1039/b907855j
    14) P. B. Balanda, M. B. Ramey and J. R. Reynolds, Macromolecules, 1999, 32, 3970
    15) I. Natori, S. Natori, H. Sekikawa and H. Sato, J. Polym. Sci.: Part A: Polym. Chem., 2008, 46, 5223
    16) S. Kobayashi and Y. Haga, Synth. Met., 1997, 87, 31
    17) C. H. Lee, G. W. Kang, J. W. Jeon, W. J. Song, S. Y. Kim and C. Seoul, Synth. Met., 2001, 117, 75
    18) 鄭弘隆,PPV光電高分子與其摻合物系列之製程結構與光電性質探討,國立台灣大學材料科學與工程學研究所博士論文,中華民國八十九年
    19) 徐雍塋,金屬與半導體奈米材料於氣相沉積程序中之控制成長,國立清華大化學工程學系研究所博士論文,中華民國九十五年
    20) K. M. Vaeth and K. F. Jensen, Appl. Phys. Lett., 1997, 71, 2091
    21) S. Kokane, M. P. Patankar, K. L. Narasimhan and N. Periasamy, Synth. Met., 2003, 132, 235
    22) M. Dubois, K. Guerin, J. Giraudet, J. F. Pilichowski, P. Thomas, K. Delbe, K. Delbe, J. L. Mansot and A. Hamwi, Polymer, 2005, 46, 6736
    23) K. Miyashita and M. Kaneko, Synth. Met., 1995, 68, 161
    24) A. Kosiek, H. Wycislik, W. Luzny, I. Wielgus and J. Plocharski, J. New Electrochem. Systems, 2001, 4, 161
    25) J. Simitzis, D. Triantou and S. Soulis, J. Appl. Polym. Sci., 2008, 110, 356
    26) B. J. Schwartz, Annu. Rev. Phys. Chem., 2003, 54, 141
    27) H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Nature, 1999, 401, 685

    CH4 參考文獻
    1) Wilson, J. S.; Dhoot, A. S.; Seeley, A. J. A. B.; Khan, M. S.; Kohler, A.; Friend, R. H. Nature, 2002, 413, 828-831
    2) Kohlre, A.; Wilson, J. S.; Friend, R. H. Adv. Eng. Mater. 2002, 4, 453
    3) M. A. Baldo, C. Adachi and S. R. Forrest, PHYS. REV. B, 2000, 62, 10967
    4) Baldo, M. A.; O’Brien, D. F.; You, y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Natur, 1998, 395, 151
    5) Andreas, E.; Helmut, W. H.; Friedrich, J.; Stephan, K.; Rolf, W.; Klaus, W. Adv. Mater, 2001, 13, 1811
    6) Linda, S. S.; Flocerfida, E. B.; Richard, S. S.; Joseph, L. B.; Krystal, K. C.; Daniel, F.; Holger, K.; Kim, F. F.; Paul, E. B. J. Am. Chem. Soc. , 2002, 124, 6119
    7) Shizuo, T.; Koji, N.; Hiromitsu, T.; Yasunori, T.; Tetsuo, T. Synthetic Metals, 2000, 111–112, 393
    8) Burrows, P. E.; Sapochak, L. S.; McCatty, D. M.; Forrest, S. R.; Thompson, M. E. , Appl. Phys. Lett. 1994, 64, 2718
    9) Schulz, G. L.; Chen, X.; Chen, S. A.; Holdcroft, S. Macromolecules, 2006, 39, 9157
    10) Fadini, A.; Schnepel, F. M. Vibrational Spectroscopy: Methods and Applications, Ellis Horwood Limited, 1989, pp15-50
    11) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons, Inc. 1997, pp257-268
    12) Saramas, D.; Martin, D. C.; Magaraphan, R. Rev. Adv. Mater. Sci., 2003, 5, 199
    13) Sakamoto, A.; Furukawa, Y.; Tasumi, M. J. Phys. Chem. , 1994, 98, 4635
    14) Furukawa, Y.; Sakamoto, A.; Tasumi, M. J. Phys. Chem. , 1989, 93, 5354
    15) Guha, S.; Rice, J. D.; Yau, Y. T.; Martin, C. M.; Chandrasekhar, M.; Chandrasekhar, H. R.; Guentner, R.; Freitas, P. S. D.; Scherf, U. Phys. Rev. B , 2003, 67, 125204
    16) Yu, J.; Hayashi, M.; Lin, S. H.; Liang, K. K.; Hsu, J. H.; Fan, W. S.; Chao, C. I.; Chuang, K. R.; Chen, S. A. Synth. Met. , 1996, 82, 159
    17) Carter, S. A.; Scott, J. C.; Brock, P. J. Appl. Phys. Lett. , 1997, 71, 1145
    18) Wohlgenannt, M.; Jiang, X. M.; Vardeny, Z. V.; Janssen, R. A. J. Phys. Rev. Lett. , 2002, 88, 197401
    19) Sudhakar,M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J. Am. Chem. Soc., 2003, 125, 7796
    20) Nguyen, T. Q.; Kwong, R. C.; Thompson, M. E.; Schwartz, B. J. Appl. Phys. Lett. 2000, 76, 2454

    CH5 參考文獻
    1) C. Sanchez and P. Judeinstein, J. Mater. Chem., 1996, 6, 511
    2) K. G. Sharp, Adv. Mater., 1998, 10, 1243
    3) M. C. Lonergan, Science, 1997, 278, 2103
    4) L. Li, E. Beniash, E. R. Zubarev, W. Xiangi, B. Rabatic, G. Zhang and S. I. Stupp, Nature Mater., 2003, 2, 690
    5) S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Nature, 2002, 420, 800
    6) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969-1994
    7) C. H. Chou, H. S. Wang, K. H. Wei and J. Y. Huang, Adv. Funct. Mater., 2006, 16, 909
    8) Y. Guo, Q. Tang, H. Liu, Y. Zhang, Y. Li, W. Hu, S. Wang and D. Zhu, J. Am. Chem. Soc., 2008, 130, 9198
    9) F. Pen, L. Lu, H. Sun, Y. Wang, J. Liu and Z. Jiang, Chem. Mater., 2005, 17, 6790
    10) Y. Guo, Y. Li, J. J. Xu, X. Liu, J. L. Xu, J. Lv, C. Huang, M. Zhu and S. Cui, L. Jiang, J. Phys. Chem. C, 2008, 112, 8223
    11) J. L. Wilson, P. Poddar, N. A. Freg and H. Srikanth, J. Appl. Phys., 2004, 95, 1439
    12) C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314, 1107
    13) Z. Lin, Chem. Eur. J., 2008, 14, 6294
    14) S. Y. Yang, O. Li, L. Chen and S. Chen, J. Mater. Chem., 2008, 18, 5599
    15) A. C. Arango, S. A. Carter and P. J. Brock, Appl. Phys. Lett., 1999, 74, 1698
    16) H. S. Nalwa, in Handbook of Organic-InorganicHybrid Materials and Nanocomposites , American Scientific Publishers, 2003, vol. 2, ch. 5, pp. 184
    17) V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature, 1994, 370, 354
    18) H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi and M. F. Rubner, J. Appl. Phys., 1998, 83, 7965
    19) W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting and A. P. Alivisatos, Adv. Funct. Mater., 2003, 13, 73
    20) E. Holder, N. Tessler and A. L. Rogacj, J. Mater. Chem., 2008, 18, 1064
    21) B. H. Lee, K. W. Kwon and M. Shim, J. Mater. Chem., 2007, 17, 1284
    22) C. T. Hsiao and S. Y. Lu, Chem. Mater., 2008, 20, 2435
    23) Y. J. Hsu and S. Y. Lu, Langmuir, 2004, 20, 194
    24) Shik, H. Ruda and E. H. Sargent, Nanotechnology, 2001, 12, 523
    25) T. Zyung, D. H. Hwang, I. N. Kang, H. K. Shim, W. Y. Hwang and J. J. Kim, Chem. Mater., 1995, 7, 1499
    26) M. Wohlgenannt, X. M. Jiang, Z. V. Vardeny and R. A. J. Janssen, Phys. Rev. Lett., 2002, 88, 197401
    27) S. Musikhin, L. Bakueva, E. H. Sargent and A. Shik, J. Appl. Phys., 2002, 91, 6679
    28) Y. Y. Lin, C. W. Chen, J. Chang, T. Y. Lin and W. F. Su, Nanotechnology, 2006, 17, 1260
    29) C. M. Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B 2003, 107, 489
    30) W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater., 2004, 16, 1009
    31) N. C. Greenham, X. Peng and A. P. Alivisatos, Phys. Rev. B, 1996, 54, 17628
    32) Y. Cheng, C Lu, Z. Lin, Y. Liu, C. Guan, H. Lu and B. Yang, J. Mater. Chem. 2008, 18, 4062
    33) G. S. Paul, P. J. Sarmah, P. K. Iyer and P. Agarwal, Macromol. Chem. Phys. 2008, 209, 417
    34) D. Hertel, H. Bassler, U. Scherf and H. H. Horhold, J. Chem. Phys. 1999, 110, 9214
    35) D. M. Taylor and C. A. Mills, J. Appl. Phys. 2001, 90, 306
    36) H. S. Nalwa, in Handbook of Organic-InorganicHybrid Materials and Nanocomposites , American Scientific Publishers, 2003, vol. 2, ch. 5, pp. 186-196

    CH6 參考文獻
    1) B O’Regan and M. Grätzel, Nature 1991, 353, 737
    2) M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Műller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc.1993, 115, 6382
    3) M.Grätzel, Nature 2001, 414, 338
    4) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, J. Am. Chem. Soc. 2003, 125, 475
    5) L.H. Hu, S.Y. Dai, J. Wen, S.F. Xiao, Y.F. Sui, Y. Huang, S.G Chen, F. T Kong, X. Pan, L. Y. Lai and K.J. Wang, J. Phys. Chem. B 2007, 111, 358
    6) A. Kay and M. Graitzel, Solar Energy Materials and Solar Cells , 1996, 44, 99
    7) W. J. Lee., E. Ramasamy, D. Y. Lee and J. S. Song, Solar Energy Materials and Solar Cells , 2008, 92, 814
    8) J. M. Kroon, N. J. Bakker, HJP Smit, P. Liska, K. R. Thampi, P. Wang,et al., Prog. Photovolt. Re.s Appl.,2007 ,15 , 1–18.
    9) J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang and Q. Meng, Carbon, 2009, 47 , 2704
    10) T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte,P. Péchy and M. Grätzelz, Journal of The Electrochemical Society, 2006, 153, A2255
    11) K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura and K. Murata, Solar Energy Materials & Solar Cells , 2003, 79 , 459
    12) Z. Huang, X. Liu, K. Li, D. Li , Y. Luo , H. Li, W. Song, L. Q. Chen and Q. Meng, Electrochemistry Communications, 2007, 9, 596
    13) J. E. Trancik, S. C. Barton and J. Hone, Nano Lett., 2008, 8, 982
    14) K. Suzuki, M. Yamaguchi, M. Kumagai and Shozo Yanagida, Chem. Lett., 2003, 32, 28
    15) T. Hino, Y. Ogawa and N. Kuramoto, Carbon, 2006, 44, 880
    16) G.L. Dong and K.J. Huttinger, Carbon , 2002, 40, 2515
    17) Z. J. Hu and K. J. Huttinger, Carbon, 2002, 40, 617
    18) O. Feron , F. Langlais , R. Naslain and J. Thebault, Carbon, 1999, 37, 1343
    19) L. Ma , G. Sines, Carbon, 2002, 40, 445
    20) B. Reznik, M. Fotouhi and D. Gerthsen, Carbon, 2004, 42, 1311
    21) M. Endo , C. Kim, K. Nishimura, T. Fujino and K. Miyashita, Carbon, 2000, 38, 183
    22) H. M. Cheng , Q. H. Yang and C. Liu, Carbon, 2001, 39, 1447
    23) M.G. Nijkamp, J. E. M. J. Raaymakers, A.J. van Dillen and K.P. de Jong, Appl. Phys. A, 2001, 72, 619
    24) A.C. Dillon and M.J. Heben, Appl. Phys. A, 2001, 72, 133
    25) A. Zuttel, Materials today, September 2003, 24
    26) K. Hemvichian, A. Laobuthee, S. Chirachanchai and H. Ishida, Polym. Degrad. Stabil., 2002, 76, 1
    27) Z.Q. Li , C. J. Lu, Z. P. Xia, Y. Zhou and Z. Luo, Carbon, 2007, 45, 1686
    28) Y. S. Han and J. Y. Lee, Electrochimica Acta, 2003, 48, 1073
    29) J. X. Jiang, F. Su, H. Niu, C. D. Wood, N. L. Campbell, Y. Z. Khimyak and A. I. Cooper, Chem. Commun., 2008, 486
    30) L. Han, N. Koide, Y. Chiba and T. Mitate, Appl. Phys. Lett., 2004, 84, 29
    31) V. A. Macagno and M. C. Giordano, Electrochim. Acta., 1969, 14, 335
    32) V. A. Macagno and M. C. Giordano, Electrochim. Acta., 1966, 11, 1553
    33) T. C. Wei, C. C. Wan, Y. Y. Wang, C. M. Chen and H. S. Shiu, J. Phys. Chem. C, 2007, 111, 4847
    34) E. R. Pinero, M. Cadek and F. Beguin, Adv. Funct. Mater., 2009, 19, 1

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE