研究生: |
周尚賢 Chou, Shang-Xian |
---|---|
論文名稱: |
以奈米狹縫實現雙波長表面電漿子之單向傳遞 Dual-wavelength Surface Plasmon Polaritons Unidirectional Propagation Using Nanoslit |
指導教授: |
黃承彬
Huang, Chen-Bin |
口試委員: |
林凡異
Lin, Fan-Yi 陳國平 Chen, Kuo-Ping |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 表面電漿子 、單向傳遞 、雙波長 |
外文關鍵詞: | surface plasmon polaritons, unidirectional propagation, dual-wavelength |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,利用巴比涅原理(Babinet’s principle)及八木天線(Yagi-Uda
antenna)為基礎,在金膜上以簡單的奈米狹縫結構和入射光的偏振態來決定表面
電漿波之傳遞方向。設計出在不同波長下都擁有強指向性之奈米天線,且加以
進行幾何排列,得出擁有最佳消光比之幾何排列。另外模擬因為 FIB 製程上有
可能造成的結構缺陷,如狹縫寬度、梯形結構等對消光比的影響,同時也計算
單對奈米狹縫組合適用頻段,並嘗試以實驗佐證模擬之結果。
In this thesis, based on Babinet’s principle and concept of Yagi-Uda antenna,
propagating direction of surface plasmon polaritons(SPP) can be controlled by using
simple nanoslits structure and polarization of incident laser. In the simulation, strongunidirectional nanoantennas for different wavelength are designed and get the results
of different alignment with the best extinction ratio. In addition, simulates the impact
on extinction ratio due to the structural defects caused by FIB, such as width of slits,
trapezoidal structure, etc. Also, calculates bandwidth for single pair of nanoantennas
and try to meet results on simulations with experiments.
[1] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol.4, pp.396-402, Jul-
Dec 1902.
[2] U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review, vol.50, pp.573-573, Sep 1936.
[3] U. Fano, "On the anomalous diffraction grating II," Physical Review, vol.51, pp. 288-288, Feb 1937.
[4] U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, vol.32, pp.393-443, Jul 1938.
[5] U. Fano, "The theory of anomalous diffraction grating and of quasi-stationary waves on metallic surfaces(Sommerfield’s waves)," Journal of Optical Society of America, vol.31, pp.213-222, Mar 1941.
[6] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol.106, pp.874-881, 1957.
[7] H. A. Atwater, "The promise of plasmonics," Scientific American, vol.296, pp.56-63, Apr 2007.
[8] K. T. Gahagan and G. A. Swartzlander, "Simultanwous trapping of low-index and high-index microparticles observed with an optical-vortex trap," Journal of the Optical Society of Amerca B-Optical Physics, vol.16, pp.533-537, Apr 199.
[9] M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorning particales," Physical Review A, vol.54, pp.1593-1596, Aug 1996.
[10] Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, vol.5, pp.349-356, May 2011.
[11] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubunsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature, vol.394, pp.348-350, July 1998.
[12] W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, "selective trapping or rotation of isotropic dielectric micro-particles by optical near field in a plasmonic Archimedes spiral," Nano Lett. 14, 547-552, Jan 2014.
[13] S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, wol.81, pp.1714-1716, Aug 2002.
[14] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Physical Review B, vol.78, 153111, Mar 2010.
[15] By Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L.Frongersma, "Elements for plasmonic nanocircuit with three-dimensional slot waveguides,"Adv. Mater, vol.22, pp.5120-5124, Sep 2010.
[16] Curto, A. G., et al., "Unidirectional emission of a quantum dot coupled to a nanoantenna," Science, 329(5994):p.930-933,2010.
[17] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, et al., "Babinet’s principle for optical frequency metamaterials and nanoantennas," Physical Review B, vol.76, p.4, July 2007.
[18] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light-Science & Applications, vol.3, p.4, May 2014.
[19] F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conservation in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, vol.105, p.4, Sep 2014
[20] J. B. Sun, X. Wang, T. B. Y. Xu, Z.A. Kudyshev, A. N. Cartwright, and N. M. Litchinitser, "Spinning Light on the Nanoscale," Nano Lett., vol.14, pp.2726-2729, May 2014.
[21] C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, "Creating optical near-field orbital angular momentum in a gold metasurface," Nano Lett., vol.15, pp.2746-2750, Mar 2015.
[22] Mohammadreza Khorasaninejad, Wei Ting Chen, Robert C. Devlin, Jaewon Oh, Alexander Y. Zhu, Federico Capasso, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging," Science, vol.352, pp.1190-1194, Jun 2016.
[23] J. Lin, J. P. B. Mueller, Q. Wang, G. H. Yuan, N. Antoniou, X. C. Yuan, et al., "Polarization-controlled tunable direction coupling of surface plasmon polaritons," Science, vol.340, pp.331-331, Apr 2013.
[24] Q. Xu, X. Q. Zhang, Q. L Yang, C. X. Tian, Y. H. Xu, J. B. Zhang, H. W. Zhao, "Polarization-controlled asymmetric excitation of surface plasmons," Optica 4, 1044-1051(2017).
[25] Dhruv Tyagi, T.-Y. Chen, and C.-B. Huang, "Polarization-Enabled Steering of Surface Plasmons Using Crossed Reciprocal Nanoantennas," Laser & Photonics Reviews, vol.14, 2000076, July, 2020.
[26] K.-M. See, F.-C. Lin, T.-Y. Chen, Y.-X. Huang, C.-H. Huang, A. T. Mina Yeşilyurt, and J.-S. Huang, "Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas," Nano Lett., vol.9, pp.6002-6008, Aug 2018.
[27] J. Kim, Y.-G. Roh, S. Cheon, J.-H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, I. Y. Song, Q-Han Park, S. W. Hwang, K. Kim, and C.-W. Lee, "Babinet-Inverted Optical Yagi−Uda Antenna for Unidirectional Radiation to Free Space," Nano Lett., vol.14, pp.3072-3078, May 2014.
[28] H. U. Yang, Robert L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, Br. A. Lail, and M. B. Raschke, "Accessing the Optical Magnetic Near-Field through Babinet’s Principle" ACS Photonics, vol.1, pp.894-899, Aug 2014.
[29] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二其 P472-485.民國89年10月