簡易檢索 / 詳目顯示

研究生: 李政霖
Li, Jheng-Lin
論文名稱: 可溼製高效率深藍光有機發光二極體
Solution-Processable and High Efficiency Deep-Blue Organic Light-Emitting Diode
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 王欽戊
Wang, Ching-Wu
李佳任
Lee, Jia-Ren
岑尚仁
Chen, Sun-Zen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 有機發光二極體濕式製程深藍光高效率
外文關鍵詞: Organic Light Emitting Diode, Solution-processable, Deep-blue, High Efficiency
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深藍光應用於顯示器可提升全彩顯示器的色彩飽和度,使其具有更寬廣的色域,能顯示更真實的畫面,是製作高品質全彩顯示器不可或缺的元素之一;對於製作有機發光二極體(Organic Light Emitting Diode, OLED)技術來說,濕式製程適用於大面積之連續滾印,能大幅降低生產成本,故開發出一可濕式製作的深藍光染料極為重要;此外,深藍螢光材料相較於深藍磷光材料,其穩定性佳、合成容易且成本低,因此較能廣泛運用;本研究利用一新穎咔唑深藍螢光客體材料7,7'-((9,9-dibutyl-9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl))bis(9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile) (JV55),摻雜於3,3'-Di(9H-carbazol-9-yl)biphenyl (mCBP) 主體材料,並藉由濕式製程,研製出一高效率深藍光有機發光二極體;於摻雜濃度3wt%,其元件性能,在亮度100 cd/m2下,其能量效率為1.7 lm/W,外部量子效率為5.5%,CIE坐標為 (0.16, 0.06);而最大外部量子效率可達6.5%及最大亮度為1,974 cd/m2;此外,利用此深藍光搭配美國國家電視標準委員會 (National Television System Committee, NTSC)所制定之標準紅綠光,色彩飽和度可達101%;此一元件之高效率,可歸因於(1) 良好的元件結構設計,有利於載子注入主體,並於主體上產生激子,以避免激子於客體產生,造成激子焠熄,降低效率;(2) 合適的主客體搭配下,可有效地將能量由主體傳遞給客體,進而提高元件效率;(3) 低主客體摻雜濃度,可避免焠熄效應所造成的效率滾降。


    Deep-blue emission is crucial for achieving high-quality display, while solution processing enables organic devices, fabricated cost-effectively with a large area-size via continuous roll-to-roll manufacturing. Remarkably, deep-blue emission also broadens the color gamut and increase the color saturation of display to show more realistic image. We demonstrate here a highly efficient solution-processable deep-blue emitting diode by utilizing a novel carbazole-based fluorescent emitter 7,7'-((9,9-dibutyl-9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl))bis(9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile) (JV55). The resultant device showed a maximum external quantum efficiency (EQE) of 6.5% and a power efficacy of 1.7 lm/W and EQE of 5.5% at 100 cd/m2 with CIE coordinates of (0.16, 0.06). Additionally, the deep-blue emission also realized a 101% color saturation according to the NTSC standard. The high efficiency may be attributed to engineering appropriate device architecture and enabling balanced carrier injection, effective host-to-guest energy transfer, and low doping concentration inhibiting efficiency roll-off due to concentration quenching.

    摘要 I Abstract II 致謝 III 目錄 IX 圖目錄 XIII 表目錄 XVII 壹、緒論 1 貳、文獻回顧 3 2-1 OLED之歷史發展 3 2-2 OLED之基本結構 26 2-3 OLED之發光原理 27 2-4 OLED的能量傳遞機制 32 2-5 光色之定義 34 2-6 OLED之元件效率 36 2-7 OLED之材料發展 38 2-7-1 陽極材料 38 2-7-2 電洞注入材料 39 2-7-3 電洞傳輸材料 39 2-7-4 有機發光材料 40 2-7-5 電子傳輸材料 41 2-7-6 電子注入材料 42 2-7-7 陰極材料 42 2-8 深藍螢光OLED之發展 43 參、實驗方法 51 3-1本研究使用之材料 51 3-1-1 材料之功能、全名及簡稱 51 3-1-2 本研究使用之材料化學結構式 53 3-2 材料特性量測分析 55 3-2-1 紫外光-可見光吸收光譜 (ultraviolet-visible absorption spectrum, UV-VIS)之量測 55 3-2-2 光激發光譜 (Photoluminescent spectrum)之量測 55 3-2-3 材料裂解溫度(decomposition temperature, Td)之量測 55 3-2-4 量子產率之(quantum yield)量測 56 3-2-5 最高已填滿分子軌域(highest occupied molecular orbital, HOMO)及最低未填滿分子軌域(lowest unoccupied molecular orbital, LUMO)之量測 56 3-3 元件設計與製備 57 3-3-1 元件電路設計 57 3-3-2 ITO基板清潔 58 3-3-3 旋轉塗佈電洞注入層 58 3-3-4 旋轉塗佈發光層 59 3-3-5 真空蒸鍍製程 59 3-3-6 蒸鍍鍍率測定 60 3-3-7 有機層之製作 60 3-3-8 無機層之製作 61 3-4 元件光電特性之量測 61 肆、結果與討論 63 4-1 深藍光材料之物理及化學性質 63 4-2 深藍光OLED元件結構 67 4-3 主體材料對元件影響 68 4-4 客體濃度對元件之影響 84 伍、結論 89 陸、參考資料 91 附錄一、個人著作目錄 98 (A) 期刊論文 98 (B) 研討會論文 98 附錄二、個人得獎紀錄 99

    [1] A. R. Duggal, J. Shiang, C. M. Heller, and D. F. J. A. p. l. Foust, "Organic light-emitting devices for illumination quality white light," vol. 80, no. 19, pp. 3470-3472, 2002.
    [2] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," vol. 14, no. 18, pp. 1275-1279, 2002.
    [3] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. J. A. P. L. Temple, "Highly flexible transparent electrodes for organic light-emitting diode-based displays," vol. 85, no. 16, pp. 3450-3452, 2004.
    [4] S. R. J. O. E. Forrest, "The road to high efficiency organic light emitting devices," vol. 4, no. 2-3, pp. 45-48, 2003.
    [5] J.-H. Jou et al., "Efficient fluorescent white organic light-emitting diodes with blue-green host of di (4-fluorophenyl) amino-di (styryl) biphenyl," vol. 8, no. 1, pp. 29-36, 2007.
    [6] J. H. Jou et al., "Nanodot‐Enhanced High‐Efficiency Pure‐White Organic Light‐Emitting Diodes with Mixed‐Host Structures," vol. 18, no. 1, pp. 121-126, 2008.
    [7] A. Wan, J. Hwang, F. Amy, and A. J. O. E. Kahn, "Impact of electrode contamination on the α-NPD/Au hole injection barrier," vol. 6, no. 1, pp. 47-54, 2005.
    [8] N. Koch, A. Elschner, J. Schwartz, and A. J. A. P. L. Kahn, "Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics," vol. 82, no. 14, pp. 2281-2283, 2003.
    [9] J.-H. Jou et al., "Small polymeric nano-dot enhanced pure-white organic light-emitting diode," vol. 9, no. 3, pp. 291-295, 2008.
    [10] F. Nüesch et al., "Doping‐Induced Charge Trapping in Organic Light‐Emitting Devices," vol. 15, no. 2, pp. 323-330, 2005.
    [11] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. J. A. P. L. Taga, "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer," vol. 79, no. 2, pp. 156-158, 2001.
    [12] Z. Xie, L. Hung, and S. J. A. P. L. Lee, "High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure," vol. 79, no. 7, pp. 1048-1050, 2001.
    [13] B. W. D'Andrade, R. J. Holmes, and S. R. J. A. M. Forrest, "Efficient organic electrophosphorescent white‐light‐emitting device with a triple doped emissive layer," vol. 16, no. 7, pp. 624-628, 2004.
    [14] A. Bernanose, M. Comte, and P. J. J. d. C. P. Vouaux, "Sur un nouveau mode d'émission lumineuse chez certains composés organiques," vol. 50, pp. 64-68, 1953.
    [15] M. Pope, H. Kallmann, and P. J. T. J. o. C. P. Magnante, "Electroluminescence in organic crystals," vol. 38, no. 8, pp. 2042-2043, 1963.
    [16] W. Helfrich and W. J. P. R. L. Schneider, "Recombination radiation in anthracene crystals," vol. 14, no. 7, p. 229, 1965.
    [17] W. Helfrich and W. J. T. J. o. C. P. Schneider, "Transients of volume‐controlled current and of recombination radiation in anthracene," vol. 44, no. 8, pp. 2902-2909, 1966.
    [18] P. Vincett, W. Barlow, R. Hann, and G. J. T. s. f. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," vol. 94, no. 2, pp. 171-183, 1982.
    [19] C. W. Tang and S. A. J. A. p. l. VanSlyke, "Organic electroluminescent diodes," vol. 51, no. 12, pp. 913-915, 1987.
    [20] C. W. Tang, C. H. Chen, and R. Goswami, "Electroluminescent device with modified thin film luminescent zone," ed: Google Patents, 1988.
    [21] C. Tang, S. VanSlyke, and C. J. J. o. A. P. Chen, "Electroluminescence of doped organic thin films," vol. 65, no. 9, pp. 3610-3616, 1989.
    [22] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," vol. 347, no. 6293, p. 539, 1990.
    [23] R. H. Friend, J. H. Burroughes, and D. D. Bradley, "Electroluminescent devices," ed: Google Patents, 1993.
    [24] C. Adachi, S. Tokito, T. Tsutsui, and S. J. J. j. o. a. p. Saito, "Organic electroluminescent device with a three-layer structure," vol. 27, no. 4A, p. L713, 1988.
    [25] M. Era, C. Adachi, T. Tsutsui, and S. J. C. p. l. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," vol. 178, no. 5-6, pp. 488-490, 1991.
    [26] J. Kido, K. Hongawa, K. Okuyama, and K. J. A. P. L. Nagai, "White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes," vol. 64, no. 7, pp. 815-817, 1994.
    [27] G. Jabbour, B. Kippelen, N. Armstrong, and N. J. A. p. l. Peyghambarian, "Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices," vol. 73, no. 9, pp. 1185-1187, 1998.
    [28] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," vol. 395, no. 6698, p. 151, 1998.
    [29] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. J. A. P. L. Leo, "Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material," vol. 73, no. 6, pp. 729-731, 1998.
    [30] J. Kido and T. J. A. P. L. Matsumoto, "Bright organic electroluminescent devices having a metal-doped electron-injecting layer," vol. 73, no. 20, pp. 2866-2868, 1998.
    [31] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. J. J. o. A. P. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," vol. 90, no. 10, pp. 5048-5051, 2001.
    [32] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. J. A. P. L. Liu, "Low-voltage organic electroluminescent devices using pin structures," vol. 80, no. 1, pp. 139-141, 2002.
    [33] T. Matsumoto et al., "27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer," in SID Symposium Digest of Technical Papers, 2003, vol. 34, no. 1, pp. 979-981: Wiley Online Library.
    [34] L. Liao, K. Klubek, and C. J. A. p. l. Tang, "High-efficiency tandem organic light-emitting diodes," vol. 84, no. 2, pp. 167-169, 2004.
    [35] L.-S. Liao, K. P. Klubek, D. L. Comfort, and C. W. Tang, "Cascaded organic electroluminescent devices with improved voltage stability," ed: Google Patents, 2004.
    [36] Y. Shao and Y. J. A. P. L. Yang, "White organic light-emitting diodes prepared by a fused organic solid solution method," vol. 86, no. 7, p. 073510, 2005.
    [37] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, and H.-C. J. A. p. l. Hu, "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source," vol. 88, no. 19, p. 193501, 2006.
    [38] Y. Sun and S. R. J. N. p. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," vol. 2, no. 8, p. 483, 2008.
    [39] S. Reineke et al., "White organic light-emitting diodes with fluorescent tube efficiency," vol. 459, no. 7244, p. 234, 2009.
    [40] Z. Wang et al., "Unlocking the full potential of organic light-emitting diodes on flexible plastic," vol. 5, no. 12, p. 753, 2011.
    [41] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. J. N. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," vol. 492, no. 7428, p. 234, 2012.
    [42] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. J. N. P. Adachi, "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence," vol. 8, no. 4, p. 326, 2014.
    [43] B. Zhao et al., "Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host," vol. 5, p. 10697, 2015.
    [44] T. A. Lin et al., "Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid," vol. 28, no. 32, pp. 6976-6983, 2016.
    [45] T.-L. Wu et al., "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off," vol. 12, no. 4, p. 235, 2018.
    [46] D. Zhang et al., "High‐Efficiency Fluorescent Organic Light‐Emitting Devices Using Sensitizing Hosts with a Small Singlet–Triplet Exchange Energy," vol. 26, no. 29, pp. 5050-5055, 2014.
    [47] D. Zhang et al., "Highly efficient full-color thermally activated delayed fluorescent organic light-emitting diodes: extremely low efficiency roll-off utilizing a host with small singlet–triplet splitting," vol. 9, no. 5, pp. 4769-4777, 2017.
    [48] J. H. Jou et al., "Candle Light‐Style Organic Light‐Emitting Diodes," vol. 23, no. 21, pp. 2750-2757, 2013.
    [49] K. T. Ly et al., "Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance," vol. 11, no. 1, p. 63, 2017.
    [50] J.-H. Jou, OLED Introduction. 2015.
    [51] L. G. Thompson and S. J. T. J. o. P. C. Webber, "External heavy atom effect on the phosphorescence spectra of some halonaphthalenes," vol. 76, no. 2, pp. 221-224, 1972.
    [52] A. J. S. S. C. Dodabalapur, "Organic light emitting diodes," vol. 102, no. 2-3, pp. 259-267, 1997.
    [53] T. J. A. d. p. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," vol. 437, no. 1‐2, pp. 55-75, 1948.
    [54] D. L. J. T. J. o. C. P. Dexter, "A theory of sensitized luminescence in solids," vol. 21, no. 5, pp. 836-850, 1953.
    [55] M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules. Wiley-VCH, 1995.
    [56] C. J. V. C. B. o. t. C. I. d. L. E. Colorimetry, "Publication CIE No. 15.2," 1986.
    [57] M. T. Lee, C. H. Liao, C. H. Tsai, and C. H. J. A. M. Chen, "Highly efficient, deep‐blue doped organic light‐emitting devices," vol. 17, no. 20, pp. 2493-2497, 2005.
    [58] H. S. Nalwa, Handbook of nanostructured materials and nanotechnology, five-volume set. Academic Press, 1999.
    [59] J.-S. Kim et al., "Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance," vol. 84, no. 12, pp. 6859-6870, 1998.
    [60] M. Mason, L. S. Hung, C. Tang, S. Lee, K. Wong, and M. J. J. o. A. P. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," vol. 86, no. 3, pp. 1688-1692, 1999.
    [61] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. J. J. o. L. Taga, "Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface," vol. 87, pp. 1165-1167, 2000.
    [62] S. A. Van Slyke, C. Chen, and C. W. J. A. p. l. Tang, "Organic electroluminescent devices with improved stability," vol. 69, no. 15, pp. 2160-2162, 1996.
    [63] A. Elschner et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," vol. 111, pp. 139-143, 2000.
    [64] K. A. Higginson, X.-M. Zhang, and F. J. C. o. M. Papadimitrakopoulos, "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3)," vol. 10, no. 4, pp. 1017-1020, 1998.
    [65] J. Kido, M. Kohda, K. Okuyama, and K. J. A. p. l. Nagai, "Organic electroluminescent devices based on molecularly doped polymers," vol. 61, no. 7, pp. 761-763, 1992.
    [66] C. Hosokawa, H. Higashi, and T. J. A. p. l. Kusumoto, "Novel structure of organic electroluminescence cells with conjugated oligomers," vol. 62, no. 25, pp. 3238-3240, 1993.
    [67] W. Gao and A. J. A. P. L. Kahn, "Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study," vol. 79, no. 24, pp. 4040-4042, 2001.
    [68] Z. Q. Gao, Z. H. Li, P. F. Xia, M. S. Wong, K. W. Cheah, and C. H. J. A. f. m. Chen, "Efficient deep‐blue organic light‐emitting diodes: arylamine‐substituted oligofluorenes," vol. 17, no. 16, pp. 3194-3199, 2007.
    [69] S. J. Lee et al., "High‐efficiency deep‐blue light‐emitting diodes based on phenylquinoline/carbazole‐based compounds," vol. 18, no. 24, pp. 3922-3930, 2008.
    [70] H. Huang et al., "Novel deep blue OLED emitters with 1, 3, 5-Tri (anthracen-10-yl) benzene-centered starburst oligofluorenes," vol. 115, no. 11, pp. 4872-4878, 2011.
    [71] H. Park et al., "Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency," vol. 22, no. 6, pp. 2695-2700, 2012.
    [72] I. Cho, S. H. Kim, J. H. Kim, S. Park, and S. Y. J. J. o. M. C. Park, "Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications," vol. 22, no. 1, pp. 123-129, 2012.
    [73] W. Li et al., "A Twisting Donor‐Acceptor Molecule with an Intercrossed Excited State for Highly Efficient, Deep‐Blue Electroluminescence," vol. 22, no. 13, pp. 2797-2803, 2012.
    [74] R. Kim et al., "Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit," vol. 49, no. 41, pp. 4664-4666, 2013.
    [75] J. Ye et al., "Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence," vol. 25, no. 13, pp. 2630-2637, 2013.
    [76] J. Y. Hu et al., "Bisanthracene‐Based Donor–Acceptor‐type Light‐Emitting Dopants: Highly Efficient Deep‐Blue Emission in Organic Light‐Emitting Devices," vol. 24, no. 14, pp. 2064-2071, 2014.
    [77] C. Liu, Q. Fu, Y. Zou, C. Yang, D. Ma, and J. J. C. o. M. Qin, "Low turn-on voltage, high-power-efficiency, solution-processed deep-blue organic light-emitting diodes based on starburst oligofluorenes with diphenylamine end-capper to enhance the HOMO level," vol. 26, no. 10, pp. 3074-3083, 2014.
    [78] Z. Gao et al., "High-efficiency deep blue fluorescent emitters based on phenanthro [9, 10-d] imidazole substituted carbazole and their applications in organic light emitting diodes," vol. 15, no. 11, pp. 2667-2676, 2014.
    [79] W. Li et al., "Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and ay coordinate< 0.05 based on a fully twisting donor–acceptor molecule," vol. 2, no. 24, pp. 4733-4736, 2014.
    [80] D. Chercka, S.-J. Yoo, M. Baumgarten, J.-J. Kim, and K. J. J. o. M. C. C. Müllen, "Pyrene based materials for exceptionally deep blue OLEDs," vol. 2, no. 43, pp. 9083-9086, 2014.
    [81] J.-H. Jou et al., "Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter," vol. 3, no. 10, pp. 2182-2194, 2015.
    [82] X. Tang et al., "Efficient deep blue electroluminescence with an external quantum efficiency of 6.8% and CIE y< 0.08 based on a phenanthroimidazole–sulfone hybrid donor–acceptor molecule," vol. 27, no. 20, pp. 7050-7057, 2015.
    [83] W.-C. Chen et al., "Molecular modification on bisphenanthroimidazole derivative for deep-blue organic electroluminescent material with ambipolar property and high performance," vol. 17, pp. 159-166, 2015.
    [84] X.-L. Li et al., "Structure-simplified and highly efficient deep blue organic light-emitting diodes with reduced efficiency roll-off at extremely high luminance," vol. 52, no. 100, pp. 14454-14457, 2016.
    [85] X. Zhan et al., "Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect," vol. 7, no. 7, pp. 4355-4363, 2016.
    [86] B. Liu et al., "Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIE y∼ 0.06," vol. 5, no. 22, pp. 5402-5410, 2017.
    [87] S. S. Reddy et al., "A rational design strategy for an extremely deep-blue fluorescent emitter with a small CIE y value for solution processable, high efficiency, organic light-emitting diodes," vol. 145, pp. 63-71, 2017.
    [88] S. Jeong, J.-I. J. D. Hong, and Pigments, "Extremely deep-blue fluorescent emitters with CIEy≤ 0.04 for non-doped organic light-emitting diodes based on an indenophenanthrene core," vol. 144, pp. 9-16, 2017.
    [89] C. Wencheng, Y. Yi, S.-F. Ni, Q.-X. Tong, F. L. WONG, and C. S. J. C. S. LEE, "Achieving efficient violet-blue electroluminescence with CIE y< 0.06 and EQE> 6% from naphthyl-linked phenanthroimidazole–carbazole hybrid fluorophores," vol. 8, no. 5, 2017.
    [90] J. Zhao et al., "EQE Climbing Over 6% at High Brightness of 14350 cd/m2 in Deep-Blue OLEDs Based on Hybridized Local and Charge-Transfer Fluorescence," vol. 10, no. 11, pp. 9629-9637, 2018.
    [91] Z.-L. Zhu et al., "Tuning electrical properties of phenanthroimidazole derivatives to construct multifunctional deep-blue electroluminescent materials," vol. 6, no. 14, pp. 3584-3592, 2018.
    [92] S. Sahoo, D. K. Dubey, M. Singh, V. Joseph, K. J. Thomas, and J.-H. J. J. J. o. A. P. Jou, "Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter," vol. 57, no. 4S, p. 04FL08, 2018.
    [93] X. Qiu et al., "Novel 9, 9-dimethylfluorene-bridged D–π–A-type fluorophores with a hybridized local and charge-transfer excited state for deep-blue electroluminescence with CIE y∼ 0.05," vol. 7, no. 3, pp. 592-600, 2019.
    [94] C. Fu et al., "Highly Efficient Deep-Blue OLEDs Based on Hybridized Local and Charge-Transfer Emitters Bearing Pyrene as the Structural Unit," 2019.

    QR CODE