研究生: |
黃子榮 Huang, Zi-Rong |
---|---|
論文名稱: |
提升PZT壓電麥克風SNR值之結構與電極設計 Bridge Structure with Differential PZT Sensing Electrodes for Microphone SNR Improvement |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
李昇憲
Li, Sheng-Shian 吳名清 Wu, Ming-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 微機電技術 、壓電材料 、麥克風 |
外文關鍵詞: | MEMS, Piezoelectric, Microphone |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用PZT壓電薄膜搭配SOI的製程平台進行壓電式麥克風的製作與實現,並提出不同於典型的結構設計以提升微機電壓電麥克風的感測靈敏度。在麥克風振膜上設計橋狀的結構,受到外界聲壓時,相比傳統的封閉式振膜結構,有較大的應力值輸出;且在振膜中間與邊緣有著相反地應力極性,透過雙感測電極的配置放大感測靈敏度;另外,透過數值分析定義電極的大小,使優化過的電極面積擺放可以有效的提升訊雜比。元件使用有限單元法的模擬方式進行設計,同時自行製作感測放大電路讀取麥克風元件訊號輸出。橋狀振膜的麥克風訊雜比達到59.3dB,相比典型的封閉式振膜54.8dB,多了約4.5dB,量測時也印證了雙電極的訊號輸出會比單電極還優異。在電極面積上的評比,也能找到一個優化值,最後在麥克風整體的頻寬表現上,封閉式振膜的低頻截止頻率小於100Hz,小線寬的橋狀振膜落在210Hz,大線寬的橋狀振膜落在266Hz。麥克風頻響的平坦區域約落在200-10kHz。
This study proposed sensitivity improvement by using dual electrode pattern and changing its boundary condition for MEMS piezoelectric microphone to increase signal to noise ratio. Use finite element analysis and lumped modal design to optimize the microphone structure. And piezoelectric microphone devices were fabricated on lead zirconate titanate (PZT) material and Silicon-on-Insulator (SOI) process. Result show that the SNR of propose type (bridge) is 59.3dB under 1kHz, 1Pa sound pressure. This value is better than typical type (clamped) which is 56.8dB. The electrical routine of differential is better than single end .The acoustic response is flat between 200~10kHz.
[1] http://www.nintendo.tw/
[2] http://www.yole.fr/
[3] https://www.i-micronews.com/news/mems.html
[4] MEMS market forecast, Yole Development, 2014.
[5]The microphone market, Yole Development, 2017.
[6] https://ez.analog.com/thread/11410#comment-42028.
[7] M.D. Williams, B.A. Griffin, T. N. Reagan, J. R. Underbrink and M. Sheplak, “An AlN MEMS Piezoelectric Microphone for Aeroacoustic Application”, Journal of Micromechanical System, vol. 21, 2012.
[8]http://www.shure.com/americas/support/find-an-answer/difference-between-a-dynamic-and-condenser-microphone.
[9] https://zh.wikipedia.org
[10] https://www.lifewire.com/condenser-and-dynamic-microphones-4142637 .
[11] www.mediacollege.com
[12] https://microphone238.weebly.com/carbon--electret-microphones.html .
[13] P. V. Loppert and S. B. Lee, “The First Commercialized MEMS Microphone,” Solid-state Sensors Actuators and Microsystems Workshop, 2006
[14] J. W. Weigold, T. J. Brosnihan, J. Bergeron and X. Zhang, “A MEMS Condenser Microphone for Consumer Applications,” IEEE MEMS, Istanbul, Turkey, 2006.
[15] A. Dehé, M. Wurzer, M. Füldner and U. Krumbein, “Design of a poly silicon MEMS microphone for high signal-to-noise ratio,” 2013 Proceedings of the European Solid-State Device Research Conference, Bucharest, 2013.
[16] C. Leinenbach, K. van Teeffelen, F. Laermer and H. Seidel, “A new capacitive type MEMS microphone,” IEEE MEMS, Wanchai, Hong Kong, 2010.
[17] T. Kasai, S. Sato, S. Conti, “Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range,” IEEE MEMS, Cancun, 2011.
[18] http://vespermems.com/
[19] T. Chew, “SmartEverything and the rise of the microphone array,” EDN NETWORK, 2017.
[20] R. J. Littrell, “High performance Piezoelectric MEMS Microphone,” Ph.D Thesis, 2010.
[21] A. Jain, “Dielectric and piezoelectric properties of PVDF/PZT composites: A review,” POLYMER ENGINEERING AND SCIENCE, 2015
[22] J. L. Huang, S. -C. Lo, J. -J. Wang, C. -E. Lu, “High sensitivity and high S/N microphone achieved by PZT film with central-circle electrode design,” IEEE MEMS, Las Vegas, NV, 2017.
[23] http://www.matbase.com/
[24] Z.H. Wang, J.M. Miao, T. Xu, G. Barbastathis and M. Triantafyllou, “Micromachined piezoelectric microphone with high signal to noise ratio,” IEEE Transducers, Denver, CO, USA, June, 2009.
[25] S. Horowitz, T. Nishida, L. Cattafesta, M. Sheplak, “Development of a micromachined piezoelectric microphone for aeroacoustics applications,” The Journal of the Acoustical Society of America December, 2007.
[26] R. Kressmann, G. Hess and R. Schellin, “New results of micromachined silicon subminiature microphones using piezoelectric polymer layers,” 9th International Symposium on Electrets Proceedings, Shanghai, 1996.
[27] S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, S. R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A, 2003.
[28] R. S. Fazzio, T. Lamers, O. Buccafusca, A. Goel and W. Dauksher, “Design and Performance of Aluminum Nitride Piezoelectric Microphones,” IEEE Transducers, Lyon, 2007.
[29] R. P. Ried, Eun Sok Kim, D. M. Hong and R. S. Muller, “Piezoelectric microphone with on-chip CMOS circuits,” Journal of Microelectromechanical Systems, vol. 2, Sep 1993.
[30] M. N. Niu, E. S. Kim, “Piezoelectric bimorph microphone built on micromachined parylene diaphragm,” Journal of Microelectromechanical Systems, vol. 12, Dec. 2003.
[31] S. Sonmezoglu, J. Segovia-Fernandez, S. T. Block, Y. Kusano, “Passive signal amplification via series-piezoelectric read-out,” IEEE Transducers, Kaohsiung, 2017.
[32] H. Y. and E. S. Kim, “Corrugated diaphragm for piezoelectric microphone,” Emerging Technologies and Factory Automation, 1996 IEEE Conference on, Kauai, HI, 1996.
[33] J. Segovia-Fernandez, S. Sonmezoglu, S. T. Block, Y. Kusano, “Monolithic piezoelectric Aluminum Nitride MEMS-CMOS microphone,” IEEE Transducers, Kaohsiung, 2017.
[34] N. Ledermann, P. Muralt, J. Baborowski, “Piezoelectric Pb(Zrx, Ti1−x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors”, Journal of Micromechanics and Microengineering, IOP Publishing Ltd, 2004.
[35] S. R. Kwon, B. Huang, S. J. Zhang, “Study on a flexoelectric microphone using barium strontium titanate,” Journal of Micromechanics and Microengineering, 2016.
[36] S. S. Lee, R. P. Ried and R. M. White, “Piezoelectric cantilever microphone and microspeaker,” Journal of Microelectromechanical Systems, vol. 5, Dec 1996.
[37] T. L. Ren, L. T. Zhang, J. S. Liu, L. T. Liu, Z. J. Li, “A novel ferroelectric based microphone,” Microelectronic Engineering, Volume 66, Issues 1–4, 2003.
[38] Y. Tomimatsu, H. Takahashi, T. Kobayashi, “A piezoelectric cantilever with a Helmholtz resonator as a sound pressure sensor,” Journal of Microelectromechanical Systems, 2013.
[39] R. Littrell, K. Grosh, “Noise minimization in micromachined piezoelectric microphones,” Acoustical Society of America, 2013
[40] T. B. Gabrielson , “Mechanical-Thermal Noise in Acoustic and Vibration sensors”, IEEE Transactions on Electron Devices , 1993.
[41] F. A. Levinzon, “Fundamental Noise Limit of Piezoelectric Accelerometer”, IEEE Sensors Journal, 2004
[42] B. Yaghootkar, S. Azimi and B. Bahreyni, “A High-Performance Piezoelectric Vibration Sensor,” IEEE Sensors Journal, vol. 17, 2017.
[43] D. T. Martin, J. Liu, K. Kadirvel, R. M. Fox, M. Sheplak and T. Nishida, “A Micromachined Dual-Backplate Capacitive Microphone for Aeroacoustic Measurements,” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1289-1302, Dec. 2007.
[44] C. H. Chen, “Fabrication of PZT-based biosensor with sol-gel process,” Ph. D thesis, 2004.
[45] E. Bartolome, “Signal conditioning for piezoelectric sensors,” High-Performance Analog Products, 2010
[46] J. Karki, “Signal Conditioning Piezoelectric Sensors,” Mixed Signal Products, 2000
[47] H. Hashemi, “Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the Job,” SNOA942A, 2015
[48] https://www.hamamatsu.com/
[49] N. Aupetit, “Signal conditioning for shock sensors,” AN4708 Application note, 2015
[50] M. Kellett, “Charge Amplifiers for Piezo Electric Accelerometers,” MK Electronics, 2001
[51] J. M. Dekkers, H. Boschker, M. van Zalk, “The significance of the piezoelectric coefficient d31, eff determined from cantilever structures,” Journal of Micromechanics and Microengineering, 2012.