簡易檢索 / 詳目顯示

研究生: 劉欣宜
Liu, Hsin-Yi
論文名稱: 基於藍芽低功耗廣播技術之延遲敏感服務可行性研究–以迫近警告應用為例
A Feasibility Study of Delay Sensitive Services Based on Bluetooth Low Energy Advertising Technology–An Application of Proximity Warning
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員: 黃政吉
Huang, Jeng-Ji
梁耀仁
Liang, Yao-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 71
中文關鍵詞: 藍芽低功耗低延遲延遲敏感迫近警示系統
外文關鍵詞: Bluetooth Low Energy, Low Latency, Delay Sensitive, Proximity Warning System
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在我們生活當中有越來越多的藍芽相關應用,其中這些應用大多都是以連線的方式來傳送訊息,像我們日常生活中使用的藍芽喇叭,或是藍芽鍵盤滑鼠等等的物品,都會需要使用藍芽連線的方式才可以使用,而連線的缺點是在連線時我們需要手動的去操作他。我們提出的系統,因為是迫近警示系統,如果要用連線的方式傳遞訊息,時間會太長,而且我們也不可能去特別指定要去警示特定的用路人,所以我們會利用藍芽非連線的方式來一直廣播訊息。有關警示系統,有很多研究他們常會利用信標(beacon)來廣播訊號,然後再根據接收到的訊號強度來決定是否進行警示,不過這些研究都沒有考慮到時間延遲的問題。因為迫近警示系統,我們不會希望接收端收到訊號後反應時間太長,所以在之後的章節我們會去討論延遲敏感的問題和探討相關參數的設計及評估。最後我們也會將我們設計討論的參數,實際應用到安卓手機應用程式和藍芽裝置上。


    There are more and more Bluetooth applications in our daily lives. In today’s market, most of Bluetooth applications are used to transmit data by connecting with other devices. For example, the Bluetooth speaker, Bluetooth keyboard, and Bluetooth mouse, and so on. These devices always need to use connecting method to transmit data. When we use the connecting method to transmit data, there is a disadvantage that we need manual operation when we need to connect with other devices. The system is designed to give proximity warning which can’t use the connecting method to transmit data. We can’t designate who needing to be warned since the road conditions are unpredictable. We use the Bluetooth non-connecting method to continuous advertising the data. There are many researches use beacon to advertise the signal in the alert system. According to the received signal strength, the system will determine the alert condition. However, these researches aren’t considering the time delay problem. In our proposed system, we will consider the delay sensitive service and the related parameters in the following chapters since the proximity warning system can’t tolerate the delay caused by scanner’s response time. Finally, we will build an application which based on the parameters and methods as we discuss in the previous. We will use the Android app and Bluetooth device to implementation the whole system.

    CONTENTS Chapter 1 Introduction-------------------------------------1 1.1 Research Motivation and Goals----------------------------1 1.2 Research Method------------------------------------------2 1.3 Related Works--------------------------------------------2 Chapter 2 General Background Information-------------------6 2.1 The Evolution of Bluetooth-------------------------------6 2.2 Bluetooth Low Energy (BLE)-------------------------------7 2.2.1 Physical Layer-------------------------------------------7 2.2.2 Advertising----------------------------------------------7 2.2.3 Scanning------------------------------------------------11 2.3 Android Operating System--------------------------------13 2.4 ESP32-DevKitC Development Board-------------------------14 Chapter 3 System Design-----------------------------------15 3.1 System Architecture-------------------------------------15 3.2 Advertising---------------------------------------------15 3.3 Scanning------------------------------------------------17 3.4 ESP32 Development Board---------------------------------17 3.4.1 Overview------------------------------------------------17 3.4.2 Directivity ESP32 Development Board---------------------20 3.5 Performance Evaluation----------------------------------22 3.5.1 Overview------------------------------------------------22 3.5.2 Theoretical Performance Evaluation----------------------23 3.5.2.1 Inter-Packet Interval-----------------------------------23 3.5.2.2 Outage Probability--------------------------------------31 3.5.3 Different Situations Performance Evaluation-------------35 Chapter 4 Practical Applications of The Proposed Architecture---50 4.1 Overview------------------------------------------------50 4.2 Application Setting-------------------------------------51 Chapter 5 Application Implement---------------------------58 5.1 Buzzer Implement----------------------------------------58 5.2 Proximity Warning System--------------------------------59 Chapter 6 Conclusion--------------------------------------62 References------------------------------------------------------63

    [1] Road safety, “All the accident number statistics and conditions in Taiwan,” [Online] Available: https://roadsafety.tw/Dashboard/Custom?type=%E7%B5%B1%E8%A8%88%E5%BF%AB%E8%A6%BD%E5%9C%96%E8%A1%A8&fbclid=IwAR3kxjVszExXDsGK9WgVkdk0P5oghXwbf2blmsqjSgQQAnaFCTWM9Mf3QZ8
    [2] A. Dementyev, S. Hodges, S. Taylor, and J. Smith, “Power consumption analysis of Bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario,” in Proc. IEEE Int. Wireless Symp. (IWS), Beijing, China, Apr. 2013, pp. 1–4.
    [3] T. Lee, J. Han, M. Lee, H. Kim and S. Bahk, “CABLE: Connection interval adaption for BLE in dynamic wireless environments,” in Proc. 2017 14th IEEE Int. Conf. on Sensing, Commun., and Netw. (SECON), San Diego, CA, USA, Jun. 2017, pp. 1-9.
    [4] E. Park, M. S. Lee, H. S. Kim and S. Bahk, “AdaptaBLE: Adaptive control of data rate, transmission power, and connection interval in Bluetooth low energy,” Comput. Netw., vol. 181, Nov. 2020, 107520.
    [5] C. Julien, C. Liu, A. L. Murphy and G. P. Picco, “BLEnd: Practical continuous neighbor discovery for Bluetooth low energy,” in Proc. ACM/IEEE Int. Conf. on Inform. Processing in Sensor Netw. (IPSN), 2017, pp. 105-116.
    [6] J. H. Chen, Y. S. Chen and Y. L. Jiang, “Energy-efficient scheduling for multiple latency-sensitive Bluetooth low energy nodes,” IEEE Sensors J., vol. 18, no. 2, pp. 849-859, Jan. 15, 2018.
    [7] S. Han, Y. Park and H. Kim, “Extending Bluetooth LE protocol for mutual discovery in massive and dynamic encounters,” IEEE Trans. Mobile Comput., vol. 18, no. 10, pp. 2344-2357, Oct. 2019.
    [8] J. Tosi, F.Taffoni, M. Santacatterina, R. Sannino and D. Formica, “Throughput analysis of BLE sensor network for motion tracking of human movements,” IEEE Sensors J., vol. 19, no. 1, Jan. 2019.
    [9] D. Giovanelli, B. Milosevic and E. Farella, “Bluetooth low energy for data streaming: Application-level analysis and recommendation,” in Proc. IEEE Int. Workshop on Advances in Sensors and Interfaces (IWASI), 2015, pp. 216-221.
    [10] M. Ghamari, E. Villeneuve, C. Soltanpur, J. Khangosstar, B. Janko and R. S. Sherratt, “Detailed examination of a packet collision model for Bluetooth low energy advertising mode,” IEEE Access, vol. 6, pp. 46066-46073, 2018.
    [11] W. S. Jeon and D. G. Jeong, “Enhanced channel access for connection state of Bluetooth low energy networks,” IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 8469-8481, Sept. 2017.
    [12] A. Korolova and V. Sharma, “Cross-App tracking via nearby Bluetooth low energy devices,” in Proc. of the 8th ACM Conf. Data and Appl. Security and Privacy, Mar. 2018, pp. 43-52.
    [13] S. Cha, M. Chuang, K. Yeh, Z. Huang and C. Su, “A user-friendly privacy framework for users to achieve consents with nearby BLE devices,” IEEE Access, vol. 6, pp. 20779-20787, 2018.
    [14] S. R. Hussain, S. Mehnaz, S. Nirjon and E. Bertino, “Secure seamless Bluetooth low energy connection migration for unmodified IoT devices,” IEEE Trans. Mobile Comput., vol. 17, no. 4, pp. 927-944, April. 2018.
    [15] K. Fawaz, K. H. Kim and K. G. Shin, “Protecting privacy of BLE device users,” in Proc. 25th USENIX Security Symp., Austin, TX, USA, Aug. 2016, pp. 1205-1221.
    [16] K. McLeod, P. Spachos and K. N. Plataniotis, “Smartphone-based wellness assessment using mobile environmental sensors,” IEEE Systems J., vol. 15, no. 2, pp. 1989-1999, June. 2021.
    [17] N.Kajikawa, Y. Minami, E. Kohno and Y. Kakuda, “On availability and energy consumption of the fast connection establishment method by using Bluetooth classic and Bluetooth low energy,” in Proc. IEEE 2016 4th Int. Symp. on Comput. and Netw. (CANDAR), 2016, pp. 286-290.
    [18] A. Nomasaki, E. Kohno and Y. Kakuda, “On the connection-establishment request control method to improve data packet delivery ratio at densely populated areas for Bluetooth MANETs,” in Proc. IEEE 2020 8th Int. Symp. on Comput. and Netw. (CANDAR), 2020, pp. 188-194.
    [19] W. Bronzi, R. Frank, G. Castignani and T. Engel, “Bluetooth low energy performance and robustness analysis for inter-vehicular communications,” Ad Hoc Networks, vol. 37, pp. 76-86, Feb. 2016.
    [20] J. Yang, C. Poellabauer, P. Mitra and C. Neubecker, “Beyond beaconing: Emerging applications and challenges of BLE,” Ad Hoc Netw., vol. 97, Feb. 2020, Art. no. 102015.
    [21] S. Naghdi and K. O’Keefe, “Trilateration with BLE RSSI accounting for pathloss due to human obstacles,” in Proc. IEEE Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), 2019, pp. 1-8.
    [22] Y. You and C. Wu, “Hybrid indoor positioning system for pedestrians with swinging arms based on smartphone IMU and RSSI of BLE,” IEEE Trans. Instrum. and Meas., vol. 70, pp. 1-15, 2021
    [23] S. Subedi, D. H. Kim, B. H. Kim and J. Y. Pyun, “Improved smartphone-based indoor localization system using lightweight fingerprinting and inertial sensors,” IEEE Access, vol. 9, pp. 53343-53357, 2021.
    [24] M. Y. Yoo, S. G. Yoo and S. Park, “Communication performance of BLE-based IoT devices and routers for tracking indoor construction resources,” Int. J. of Internet, Broadcast. and Comm., vol. 11, no. 1, pp. 27-38, 2019.
    [25] P. C. Ng, J. She and R. Ran, “A compressive sensing approach to detect the proximity between smartphones and BLE beacons,” IEEE Internet of Things J., vol. 6, no. 4, pp. 7162-7174, Aug. 2019.
    [26] T. M. Dinh, N. S. Duong and K. Sandrasegaran, “Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map,” IEEE Sensors J., vol. 20, no. 17, pp. 10283-10294, Sept. 2020.
    [27] P. Li, X. Yang, S. Gao and Q. Niu, “Smartphone-based indoor localization with integrated fingerprint signal,” IEEE Access, vol. 8, pp. 33178-33187, 2020.
    [28] S. Subedi, H. Gang, N. Y. Ko, S. Hwang and J. Pyun, “Improving indoor fingerprinting positioning with affinity propagation clustering and weighted centroid fingerprint,” IEEE Access, vol. 7, pp. 31738-31750, 2019.
    [29] E. Longo, A. E.C. Redondi and M. Cesana, “Accurate occupancy estimation with WiFi and Bluetooth/BLE packet capture,” Comput. Netw., vol. 163, Nov. 2019, Art. no. 106876.
    [30] P. Davidson and R. Piché, “A survey of selected indoor positioning methods for smartphones,” IEEE Comm. Surveys & Tutorials, vol. 19, no. 2, pp. 1347-1370, 2nd Quart., 2017.
    [31] J. Bay, J. Kek, A. Tan, C. Sheng Hau, L. Yongquan, J. Tan and T. Anh Quy, “BlueTarce: A privacy-preserving protocol for community-driven contact tracing across borders,” Government Technology Agency, Singapore, BlueTrace White Paper, 2020.
    [32] M. Cunche, A. Boutet, C. Castelluccia, C. Lauradoux and V. Roca, “On using Bluetooth-low-energy for contact tracing,” Version 5, Inria Grenable Rhône-Alpes, INSA de Lyon, Villeurbanne, France, Tech. Rep., 2020.
    [33] M. Girolami, F. Mavilia and F. Delmastro, “Sensing social interactions through BLE beacons and commercial mobile devices,” Pervas. and Mobile Comput., vol. 67, Sept. 2020, Art. no. 101198.
    [34] M. Girolami, F. Manilia, F. Dekmastro, “A Bluetooth low energy dataset for the analysis of social interactions with commercial devices,” Data Brief, vol. 32, Oct. 2020, Art. no. 106102.
    [35] P. C. Ng, P. Spachos and K. N. Plataniotis, “COVID-19 and your smartphone: BLE-based smart contact tracing,” IEEE Syst. J., early access, MAR. 9, 2021, doi: 10.1109/JSYST.2021.3055675.
    [36] Z. Su, K. Pahlavan and E. Agu, “Performance evaluation of COVID-19 proximity detection using Bluetooth LE signal,” IEEE Access, vol. 9, pp. 38891-38906, 2021.
    [37] V. Shubina, A. Ometov and E. S. Lohan, “Technical perspectives of contact-tracing applications on wearables for COVID-19 control,” in Proc. IEEE 2020 12th Int. Congress on Ultra Modern Telecom. and Control Syst. and Workshops (ICUMT), 2020, pp. 229-235
    [38] X. Yang, J. Park and Y. Cho, “Adaptive signal processing for BLE-based sensors for construction proximity application,” Constr. Res. Congress, Baton Rouge, Louisiana, April. 2018, pp. 84-93.
    [39] J. Park, X. Yang, Y. Cho and J. Seo, “Improving dynamic proximity sensing and processing for smart work-zone safety,” Autom. in Constr., vol. 84, pp. 111-120.
    [40] Y. Cho, X. Yang and J. Park, “Improving work zone safety utilizing a new mobile proximity sensing technology,” CPWR study report, July. 2017, no. 16-1-PS
    [41] J. Beak and Y. Choi, “Bluetooth-beacon-based underground proximity warning system for preventing collisions inside tunnel,” Appl. Sci. 2018.
    [42] Y. Kim, J. Beak and Y. Choi, “Smart helmet-based personnel proximity warning system for improving underground mine safety,” Appl. Sci. 2021.
    [43] Y. Watanabe and Y. Shoji, “A vehicle-approach alert system based on the neighbor discovery protocol for pedestrian safety,” in Proc. IEEE Global IoT Summit (GIoTS), 2019, pp. 1-6.
    [44] R. Hasan, R. Hasan and T. Islam, “InSight: A Bluetooth beacon-based Ad-hoc emergency alert system for smart cities,” in Proc. IEEE Ann. Consumer Commun. & Netw. Conf. (CCNC), 2021, pp. 1-6.
    [45] M. Wu, B. Ma, Z. Liu, L. Xiu and L. Zhang, “BLE-horn: A smartphone-based Bluetooth low energy vehicle-to-pedestrian safety system,” in Proc. IEEE Int. Conf. on Wireless Commun. and Signal Processing (WCSP), 2017, pp. 1-6.
    [46] N. D. Reave, M. D. Schepper, J. Verhaevert, P. V. Torre and H. Rogier, “A Bluetooth-low-energy-based detection and warning system for vulnerable road users in the blind spot of vehicles,” Sensors. 2020. no. 9: 2727.
    [47] J. Verhaevert, “Detection of vulnerable road users in blind spots through Bluetooth low energy,” in Proc. IEEE Progress In Electromagn. Res. Symp. (PIERS), 2017, pp. 227-231.
    [48] J. R. Lin, T. Talty and O. K. Tonguz, “A blind zone alert system based on intra-vehicular wireless sensor networks,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 476-484, April. 2015.
    [49] Wikipedia contributors, “Bluetooth,” [Online]. Available: https://en.wikipedia.org/wiki/Bluetooth. [Accessed Nov 2022].
    [50] IDC, “Worldwide smartphone shipment OD market share forecast,” [Online]. Available: https://www.idc.com/promo/smartphone-market-share. [Accessed Nov 2022].
    [51] Espressif, “ESP32,” [Online]. Available: https://www.espressif.com/en/products/socs/esp32. [Accessed Nov 2022].
    [52] Android developers, “Advertise Settings,” [Online]. Available: https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings. [Accessed Nov 2022].
    [53] ESP32 development board, “OTA TEST REPORT,” [Online]. Available: https://fccid.io/2AWQX-SZRD19/Letter/ESP32-WROVER-B-Antenna-Specification-4825284.pdf. [Accessed Nov 2022].
    [54] ESP32 development board connect way, [Online]. Available: https://wokwi.com/. [Accessed Jan 2023].

    QR CODE