研究生: |
顏丹青 Tan-Ching Yen |
---|---|
論文名稱: |
次世代液晶顯示器用彩色濾光片元件之平坦化製程技術開發與擬真度評價指標系統 Planarization Technologies and Fidelity Evaluation Systems of the Next Generation Color Filter for LCD |
指導教授: |
左培倫
Pei-Lum Tso |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 液晶顯示器 、彩色濾光片 、平坦化 、擬真度 |
外文關鍵詞: | LCD, Color Filter, Planarization, Fidelity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於液晶顯示器(Liquid Crystal Display; LCD)應用市場的快速變化,對於彩色濾光片的需求也是日新月異地演進。高精細、高性能需要的液晶顯示器而言,導入高效率的平坦化製程以及相關造型輔助的設計技術是LCD產業步入次世代發展必經之路。
本文內容包含於彩色濾光片產業多年工作經驗與想法做一彙整如下:
1. 提出了導入化學機械平坦拋光作業的CFP彩色濾光片製程技術,有效達成次世代LCD對於彩色濾光片的高表面平坦度幾何公差要求。同時,更藉此技術得以降低生產成本、製造工序,及減少不良品的發生。
2. 提出利用CFP拋光技術與變動上色順序的概念,針對次世代高開口率LCD進行所需求之極精細BM線寬製程技術開發,並完成5.8□m BM線寬之樣品實作。
3. 提出客觀評價彩色濾光片表面平坦度特性(Degree of Planarization; DOP)評價指標系統,以符合彩色濾光片之特殊造型需求。
4. 創先在彩色濾光片製作技術中導入近接光學修正(Optical Proximity Correction)的微影光罩補償技術,完成具高度光阻圖形擬真度(Pattern Fidelity)的樣品。
彩色濾光片是LCD中對於色彩表現的關鍵零組件。除了色彩表現外,彩色濾光片的各項幾何構造與誤差(如線寬、光阻造型擬真度、表面平坦度、成膜厚度、Total Pitch、重疊寬度等)也都在LCD的整體表現上扮演某種重要的關鍵角色。因此開發出得以使彩色濾光片各項幾何構造更精確、誤差越低的製程方法是未來繼續發展的方向。
An effective process for fabricating color filters (CF) must satisfy three requirements: 1. low-cost material, 2. simple procedures, and 3. high throughput. Several systemic issues affect the conventional CF process, such as the pigment-dispersion method. For high yield and low cost, it is necessary to develop a new fabrication method for CFs, which are not affected by these systemic issues. In this paper, an entirely new process for fabricating CFs is introduced. This process, which satisfies the three requirements above, introduces chemical-mechanical polishing techniques to produce CFs for LCDs. Because of the usage of chemical-mechanical polishing techniques, this new CF fabrication method is named the color filter polishing (CFP) method.
Based on the high resolution and high aperture ratio needed for LCD (Liquid Crystal Display), we introduced the advanced color filter polishing technology for processing a fine line-width BM (Black Matrix) of a color filter. The dimensional compensation method for the pattern-size design of the photo-mask according to the characteristics of the colorant resists was described to rectify the line-width variation caused by the proximity aligner, the most popular exposure machine in the color filter manufacturing. In this paper, we introduce the color filter polishing and the photo-mask compensation technologies into the present color filter process flows and equipments to achieve the need for a fine line-width BM to increase the aperture ratio of LCD and to accomplish a real color filter sample with 5.8□m line-width BM.
For portable digital displays, the pattern of a color filter should resemble the design pattern as much as possible to avoid contrast loss within the liquid crystal display (LCD). The higher the quality requirement of a LCD is, the smaller the difference between the design pattern and the actual pattern of a color filter, also known as “pattern fidelity,” should be. In this work, we use the histogram of the different segments between the designed pattern and the actual pattern to define the critical shape error (CSE) indices, CSEavg, CSE90, and CSE80, the area percentage indices of the “white zone” (W.Z. Area %) and the “over zone” (O.Z. Area %), and the maximum segment width of the “over zone” (Max. CSE width). Through the evaluation of all indices of the optical proximity correction (OPC) patterns, we choose the optimal OPC pattern, the hexagon OPC pattern circumscribing a circle of diameter in 3□m, and have a color filter with very good pattern fidelity.
參考文獻
1. 陳連春譯, “ 最新液晶應用技術 ”, 建興出版社, 1997.
2. 液晶顯示器產業專題報告, ITIS, 1998.
3. 財團法人工業技術研究所電子工業技術研究院內部技術資料,1997-1998.
4. 世界巔峰科技股份有限公司內部技術資料,1998-2000.
5. 田志豪、趙中興編譯, “顯示器原理與技術”, 全華出版社, 1998.
6. T. Uchida, “A Liquid Crystal Multicolor Display Using Color Filters,” Proceeding of International Display Research Conference, 1981, pp. 39-42.
7. D. Hoke, H. Mori and J. Bos, “Optical Compensation of Liquid Crystal Materials Using Negative Birefringence Compensation Films,” Jpn. J. Appl. Phys. Vol. 38, 1999, pp. L642-L645.
8. 鄭文桐, "液晶顯示器用彩色濾光片製程發展概況", 工業材料114期, 1996.
9. J. Watanabe, Technologies on LCD Color Filter, Components and Chemicals. CMC polishing, 1998, Japan.
10. 牛昭文, "電著/微影法-彩色濾光片", 工業材料114期, 1996.
11. 溫俊祥,"電著微影法彩色濾光板應用",工業材料156期, 1999.
12. 李榮哲, "LCD濾光板用彩色光阻", 工業材料140期, 1998.
13. 蘇品書, 超微粒子材料技術, 復漢出版社, 1998.
14. 趙承琛, 界面科學基礎, 復文書局, 台南, 1998.
15. 廖明隆編譯, 顏料化學, 台灣文源書局, 1996.
16. 王建榮、林慶福、林必窕,半導體平坦化CMP技術,全華科技圖書股份有限公司, 1999.
17. Saikatsu et al., "Pigment dispersant, pigment despersion, and pigment dispersion for color filter", US.Patent No.5,961,711, 1999.
18. Gnerlich Robin Gant et al., "Process for preparing pigment dispersions used in ink", US.Patent No.5,891,231, 1999.
19. Lin, Hsien-Kuang; "Method for producing color filter by the use of anionic electrocoats", US. Patent No.5,658,697, 1997.
20. Yasuhiro, Shima et al., "Black photosensitive resin composition, color filter made by using the same, and a process for production thereof", US. Patent No.5,925,484, 1999.
21. 中原 司,”LCD Color Filter Polishing加工技術”,Optronics No.7, 1991, pp229-231.(日文)
22. 世界巔峰科技股份有限公司內部技術資料,1998-2000.
23. D.J. Perettie, M.J. Radler, T. Takahashi, “Benzocyclobutene as a Planarization Overcoat for Flat Panel Displays.” Asia Display ’95, 1995, pp.721-724.
24. 統寶光電股份有限公司內部技術資料,2000-2001.
25. P. V. Zant, Microchip Fabrication. 3rd edition, 1996. McGraw-Hill, pp. 11.
26. 戴寶通"化學機械研磨機制探討及消耗材的發展",電子月刊第三卷第三期、1997年三月號、pp.63-69.
27. 張鼎張、周美芬,"旋塗式有機高分子的介電材料",電子月刊,第五卷第一期,1999, 頁132-139.
28. W.C. Chen, S.C. Lin, B.T. Dai, and M.S. Tsai, "Chemical Machanical Polishing of Low-Dielectric-Constant Polymers: Hydrogen Silsesquioxane and Methyl Silsesquioxane", Journal of The Electrochemical Society, Vol.146(8), 1999, pp.3004-3008.
29. J. Sun, L.C. Zhang, Y.-W. Mai, S. Payor, and M. Hogg, ”Material removal in he optical polishing of hydrophilic polymer materials.” Journal of Materials Processing Technology, 2000, pp.230-236.
30. C. Henderson, W. Otto, G. Garofalo and S. Vaidya, “Optical Proximity Effect Correction: An Emerging Technology”, Microlithography World, summer 1994, pp.6-12.
31. K. Eib, “The art and science of lithography simulation”, Microlithography World, winter 1996, pp.11-15.
32. A. Mack, “Evaluation of Proximity Effects Using Three-dimensional Optical Lithography Simulaiton”, Processing of SPIE, Vol. 2726, 1996, pp.634-639.
33. T. C. Yen and P. L. Tso, “Fine Line-width Black Matrix of Color Filter by Advanced Polishing Method”, Journal of Micromechanics and Microengineering, Vol. 41, 2004, pp. 867-875.
34. R. W. Sabnis, “Color filter technology for liquid crystal displays”, Displays, 20, 1999, p.119.
35. L. F. Bacchetti, E. L. Alemy, M. E. Perkins, C. R. Szmanda and R. L. Brainard, “High Speed, PAG Black Matrix Photophoto-resist”, Proceedings of IDW, 1996, p.333.
36. C. W. Kim and Y. B. Park, etc., “A Novel Four-Photo-mask-Count Process Architecture for TFT-LCD”, SID Digest , 2000, p.1006.
37. P. L. Tso, Y. C. Chang, "An experimental investigation of chemical mechanical polishing parameters on surface finishing", International Conference on Advanced Manufacturing Technology, 1999, p.141.
38. J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley and Sons Inc., New York, 1997, p.37.
39. D. Chen and Z. Chen, “Color-Filter production by Continuous-Flow automatic manufacturing”, SID DIGEST, 1995, p.31.
40. D.J. Perettie, M.J. Radler, and T. Takahashi, “Benzocyclobutene as a Planarization Overcoat for Flat Panel Displays”, Asia Display, 1995, p.721.
41. J. Sun, L.C. Zhang, Y.W. Mai, S. Payor, and M. Hogg, ”Material removal in the optical polishing of hydrophilic polymer materials”, Journal of Materials Processing Technology, 2000, p.230.
42. L. F. Bacchetti, E. L. Alemy, M. E. Perkins, C. R. Szmanda and R. L. Brainard, “High Speed, PAG Black Matrix Photoresist”, Proceedings of IDW, 1996, pp.333-336.
43. W. B. Glendinning and J. N. Helbert, Handbook of VLSI Microlithography., Noyes Publications, 1991, pp.11.
44. S. Kodama, K. Kato, H. Aoki, H. Shimada and R. Nirei, “Proximity Exposure System for Large Scale Liquid Crystal Displays”, Hitachi Electronic Engineering Technical Report No.7, 1994, pp.29-34.
45. H. Kitahara, E. Colgan and K. Schleupen, “Technology Trend of Large Size and High Resolution Direct-View TFT-LCD”, SID Digest , 2000, pp.1108-1111.
46. Katsunaga Tomohiro, “The Exposure Machine for Low Temperature Poly-silicon Liquid Crystal Display Productions”, Liquid Crystal Display Technologies 2000, Industrial Investigation Japan, 2000, pp.71-75.
47. M. Tani, T. Sugimura, M. Sakagawa, S. Ito and T. Okano, “A Novel Black Matrix with High Optical Density and Low Reflection”, IDW’96, 1996, pp.321-324.
48. H. Asuma, H. Sonoda, S. Matsuyama, K. Ashizawa, M. Ohta and S. Aratani, “Electrical Characteristics of Black Matrix for Super-TFT-LCDs”, IDW’97, 1997, pp.167-170.
49. C. W. Kim, H. R. Ham, S. G. Rho and J. H. Lee, “Planarized Black Matrix on TFT structure for TFT-LCD Monitors”, SID Digest, 1997, pp.19-22.
50. W.J. Patrick, “Application of chemical Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections”, J. Electrochem. Society, Vol 138, No 6, Jun 1991, pp.1778-1784.
51. 中原 司,”LCD Color Filter Polishing加工技術”,Optronics No.7, 1991, pp.229-231.(日文)
52. J. Sun, L.C. Zhang, Y.-W. Mai, S. Payor, and M. Hogg, ”Material removal in he optical polishing of hydrophilic polymer materials.” Journal of Materials Processing Technology, 2000, pp.230-236.
53. T. C. Yen and P. L. Tso, “A New Concept of Color Filter Processes Using Chemical-Mechanical Polishing (CMP) Technologies”, the 7th ASID, 2002, pp.121-124.
54. Ram W. Sabnis, “Color filter technology for liquid crystal displays”, Displays 20, 1999, pp.119-129.
55. H. H. Lu, L. M. Chen, C. J. Wang et al., “Effects of abrasive particles on the performance of oxide slurry in the CMP process”, VLSI Multilevel Interconnection Conf. Proc., 1999, pp.231.
56. D. Towery and M.A. Fury, "Chemical Mechanical Polishing of Polymer Film", Journal of Electronic Materials, Vol. 27, No. 10, 1998, pp.1088-1094.
57. S.Y. Chen and S.C. Lin, A Study of Effects of Polishing Parameters on Surface Characteristics and Removal Rate of Glass-Ceramic Based Rigid Disk. Thesis, NTHU, Taiwan, 2001.
58. Data sheets of Commercial Materials, JSR, 1998.
59. Ya-li Tai, Bau-Tong Dai, Ming-Shih Tsai et al., “CMP of polyimide for low-k dielectric application in ULSI”, International Symposium on VLSI Technology, Systems, and Applications, 1999, pp.139-42.
60. 世界巔峰科技股份有限公司內部技術資料,1998-2000.
61. T. Uchida, “A Liquid Crystal Multicolor Display Using Color Filters,” Proceeding of International Display Research Conference, 1981, pp. 39-42.
62. T.C. Hsieh, Y.H. Lu, and H.L. Liao, “Development of a Simple Process to Fabricate High-Quality Multigap Color Filters,” SID DIGEST, 1997 , pp.560-563.
63. T. Yamazaki, H. Kawakami, and H. Hori, Color TFT Liquid crystal displays. SEMI, 1996, pp.77.
64. Y. Ugai and S. Matsumoto, “Recent Development and Application of TFT-LCDs,” SPIE’s 42th Annual Meeting Liquid Crystals Vol.3143, 1997, pp. 2-21.
65. T. Uchida, “High Performance Liquid Crystal Display,” Proceedings of the 7th Asian Symposium on Information Display, 2002, pp. 17-20.
66. K. Fujimori, etc., “New Color Filter Structures for Transflective TFT-LCD,” SID 2002 International Symposium, 2002, pp. 1382-1385.
67. T. C. Yen and P. L. Tso, “An Effective Fabrication Method for Producing Color Filters of Liquid Crystal Displays,” Japanese Journal of Applied Physics, Vo. 43, No. 7A, 2004, pp. 4229-4233.
68. D.J. Perettie, M.J. Radler, and T. Takahashi, “Benzocyclobutene as a Planarization Overcoat for Flat Panel Displays,” Asia Display ’95, 1995, pp.721-724.
69. S. Kawa and H. Seki, Flat Panel Display 2000. Nikkei Microdevices, 2000, pp. 60.
70. K. Fujimori, etc., “New Color Filter Structures for Transflective TFT-LCD”, SID 2002 International Symposium, 2002, pp. 1382-1385.
71. H. Takezoe, Y. Takanishi and K. Miyachi, Graphical Textbook of Liquid Crystal Display. Technical Publication, 2001, pp. 121 .
72. C. Henderson, W. Otto, G. Garofalo and S. Vaidya, “Optical Proximity Effect Correction: An Emerging Technology”, Microlithography World, summer 1994, pp.6-12.
73. K. Eib, “The art and science of lithography simulation”, Microlithography World, winter 1996, pp.11-15.
74. A. Mack, “Evaluation of Proximity Effects Using Three-dimensional Optical Lithography Simulaiton”, Processing of SPIE, Vol. 2726 ,1996 , pp.634-639.
75. R. W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays 20, 1999, pp.119-129.
76. T. C. Yen and P. L. Tso, “Fine Line-width Black Matrix of Color Filter by Advanced Polishing Method”, Journal of Micromechanics and Microengineering, Vol. 41, 2004, pp. 867-875.
77. T. Yamazaki, H. Kawakami, and H. Hori, Color TFT Liquid crystal displays. SEMI, 1996, pp.77.