簡易檢索 / 詳目顯示

研究生: 侯雅榕
Yea-Rong Hou
論文名稱: 多用戶正交分頻多工系統之低複雜度資源分配演算法
A Low-Complexity Resource Allocation Algorithm for Multi-user OFDM Systems
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 50
中文關鍵詞: 多用戶正交分頻多工資源分配能量分配低複雜度
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多用戶正交分頻多工系統(MU-OFDM)被視為未來蜂巢及無線區域網路上的一項重要技術,它可達到高的傳輸資料量且允許多用戶在不同的載波上同時傳輸資料。MU-OFDM的資源分配是指用戶之間的子載波和功率分配。一個有效的資源分配方式可以提高頻譜的使用效率以及整體的服務品質。
    在先前的資料中,已有提出有效的資源分配方法提高整體傳輸的資料量,但是卻不能確保用戶之間的公平性。在本論文中,我們提出一種新型且具有低複雜度的方法來實現多用戶之間的資源分配問題。討論在有限的傳輸總功率下如何達到最高傳輸的資料量,並維持用戶之間傳輸資料量的公平性。然而最佳的分配法和利用遞迴式解根的方法其複雜度頗高,所以我們提出一種較低複雜度的方法,一樣也可以維持用戶之間傳輸資料量的公平性。
    我們提出的方法是將有限的總功率分成兩個部份,其中一個部份用於子載波的分配,另一個部份用來調整用戶間傳輸資料量的公平性,也就是將功率分配給當時擁有最小的資料量比例(實際傳輸資料量除以預設傳輸資料量比)的用戶。每次都將功率分配給當時擁有最小的資料量比例的用戶使得用戶之間的差距越來越小,也就達到了用戶之間的公平性了。
    如何將總功率做最有效的分配,與決定用於載波分配部分所需要的功率以及用於彌補擁有最小的資料量比例的用戶所需要的功率該用多少,也是本文探討的重點之ㄧ並且提供推導的分析結果。
    最後的模擬結果顯示運用提出的方法不但維持用戶之間傳輸資料量的預設比例(公平性),也達到了最佳的方法所達到的傳輸量的98%,證明此方法的可行性。


    Multi-user orthogonal frequency division multiplexing (MU-OFDM) allows multiple users to transmit simultaneously on different subcarriers during the same symbol period and which is a promising technique for achieving high downlink capacities in future cellular and wireless local area network systems. The resource allocation of MU-OFDM is the subcarrier and power allocation among users sharing the same OFDM spectrum. An efficient resource allocation algorithm can improve the spectrum efficiency and support the quality of service requirement.
    In the previous literature, some resource allocation algorithms cannot ensure the fairness among users in advance. This thesis considers an allocation scheme of subcarriers and power to each user for maximizing the sum of users’ data rates, and subjecting to constraints on the total transmit power and proportional fairness among users’ data rates. Since the computational complexity of optimal solution and iterative root-finding method for achieving the constraints are extremely high, we propose a low-complexity suboptimal algorithm to satisfy the constraints. In the proposed algorithm, we divide the total transmit power into two parts such that a portion of the total power uses in the subcarrier allocation algorithm for attaining the coarse proportional fairness and the rest power is used in the power allocation algorithm for increasing minimum proportional data rate and fulfilling the better proportional fairness. Additionally, a range of deciding how much the power will be allotted to the subcarrier allocation algorithm is also derived. The simulation results demonstrate that the proposed algorithm can satisfy the proportional fairness and achieve about upward 98% capacity of the optimal power algorithm in [11].

    摘要 誌謝 目錄 第一章 簡介 第二章 OFDM & MU-OFDM 系統基本原理 第三章 MU-OFDM 系統模型和資源分配演算法 第四章 模擬結果和複雜度比較 第五章 結論 附錄 論文英文本 Contents Abstract i Contents iiii List of Figures v List of Tables vii Chapter 1 Introduction…………………………………………………………... 1 Chapter 2 Introduction of OFDM and MU-OFDM Basics and Resource Allocation Algorithms ………………………………………… 3 2.1 Introduction to OFDM…………………………………................................... 3 2.2 Overview of MU-OFDM ……………………………….................................. 6 2.3 Resource Allocation Scheme and Previous Resource Allocation Algorithm… 7 Chapter 3 Resource Allocation for Multiuser OFDM Systems……. 13 3.1 System Model…….………………………….................................................... 13 3.2 Sub-carrier and Power Allocaion Algorithml………………………………….. 15 3.2.1 Optimal Su-bcarrier and Power Allocation..……....................................... 15 3.2.2 Suboptimal Sub-carrier and Power Allocation............................................ 17 3.2.2.1 Suboptimal Sub-carrier Allocation……………....................................... 17 3.2.2.2 Optimal Power Allocation…................................................................... 18 3.2.2.3 Proposed Suboptimal Sub-carrier and Power Allocation Algorithm….. 21 3.2.2.4 Discussions of Proposed Suboptimal Algorithm.................................... 23 Chapter 4 Simulation Results and Complexity Comparisons…...…. 35 4.1 Simulation Results……..…………………….................................................... 35 4.2 Complexity Comparison...…………….……………………….…………….... 39 Chapter 5 Conclusion……………………….…………………………………....46 Bibliography……………………………………………………………………......48

    [1] IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Brosdband Wireless Access Systems-Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz, IEEE Standard 802.16a, 2003.
    [2] H. Sari and G. Karam, “Orthogonal frequency division multiple access and its application to CATV networks,” Eur. Trans. Telecommun., vol. 9, pp. 507-516, Dec. 1998.
    [3] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston/London: Artech House, 1999.
    [4] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. 19, pp. 628-634, Oct. 1971.
    [5] E. Lawrey, “Multiuser OFDM,” in Proc. Int. Symp. Signal Processing and Its Applications (ISSPA’99), Brisbane, Australia, Aug. 1999, pp. 761-764.
    [6] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multicarrier OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
    [7] W. Rhee and J. M. Cioffi, “Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, vol. 2, May 2000, pp. 1085-1089.
    [8] I. Kim, H. L. Lee, B. Kim, and Y. H. Lee, “On the user of linear programming for dynamic subchannel and bit allocation in multiuser OFDM,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, vol. 6, Nov. 2001, pp. 3648-3652.
    [9] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
    [10] Z. Shen, J. G. Andrews, and B. L. Evans, “Optimal Power Allocation in Multiuser OFDM Systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2003), San Francisco , CA, Dec. 2003, pp. 337-341.
    [11] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive Resource Allocation in Multiuser OFDM Systems with Proportional Rate Constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Nov. 2005.
    [12] IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed Broadband Wireless Acess Systems, IEEE Standard 802.16, June 2004.
    [13] R. Baldick, Optimization of Engineering Systems Course Notes, Austin, TX: Univ. Texas. [Online]. Available: http://www.ece.utexas.edu/~baldick/
    [14] K. Kim, Y. Han, and S. L. Kim, “Joint Subcarrier and Power Allocation in Uplink OFDMA Systems,” IEEE Commun. Lett., vol. 9, no. 6, pp. 526-528, June 2005.
    [15] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, 2002.
    [16] WiMAX Forum, “IEEE 802.16a standard and WiMAX igniting broadband wireless access,” White Paper, Sep. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE