簡易檢索 / 詳目顯示

研究生: 王郁仁
Wang, Yu-Jen
論文名稱: 用於轉輪動能獵取之電磁式發電元件開發
SYSTEM ANALYSIS OF AN ELECTROMAGNETIC GENERATOR FOR HARVESTING ENERGY FROM A ROTATING WHEEL VIA A WEIGHTED PENDULUM
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 王國雄
李安謙
趙昌博
陳世樂
董必正
鄭志鈞
成維華
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 107
中文關鍵詞: 能量獵取元件共振頻率自我調整元件配重單擺微型發電機
外文關鍵詞: Energy harvesting device, Frequency-adjusting device, Weighted pendulum, Micro-power generator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動能獵取技術可將環境中的動能轉換為電能,以取代傳統電池之電化學供電方式,作為低耗電產品的供電來源,如:壓力與溫度感測元件。無線胎壓計 (Tire pressure monitoring system, TPMS) 可用來偵測車輪胎壓,有效地減少因胎壓不足所造成的事故。在美國、歐洲與亞洲的部分地區,正在考慮藉立法將TPMS列為汽車必備品。然而,目前TPMS的壓力感測元件皆採用電池作為電力供應來源,其缺點包含電池的壽命有限以及對於環境的污染。因此,本研究致力於開發可應用於TPMS的發電元件。
    本研究所設計的配重單擺利用多個配重產生電能,並應用於旋轉輪胎動能獵取上。一般而言,單一單擺無法於各種頻率皆產生大角度擺動。本研究開發共振頻率可自我調整之配重單擺技術,使得該結構可於各種車速之下皆能保持共振模態並以高轉換效率將動能轉換成電能。此一設計模型已被建立,其數值分析結果與實驗比較,不論是擺動角度與速度都僅只有微小的差異,且配重單擺的非線性行為也被詳細討論。配重單擺結合電磁發電機制可產生數百微瓦的能量,發電機制的物理模型由法拉地定律與勞倫茲力所產生的電磁阻尼力都已被考慮在此一模型當中,其數值分析與實驗結果的比較已完成,並具有良好的一致性。此外,為了提昇電磁發電效率,本文更提出創新環狀賀巴陣列(Circular Halbach array)磁路設計,能夠減少40 % 的線圈使用。
    相關實驗與驗證方式,包含配重單擺擺動角度量測與發電量測皆已建立完成,並驗證本研究所提出之理論的正確性,藉由實驗結果驗證本研究所完成微型獵能器雛形品可於200~500 rpm之轉輪轉速之下,產生200~400微瓦之發電量,足以作為無線胎壓計供電之使用。


    Harvesting kinetic energy from environment is particularly suitable to replace the traditional electro-chemical type batteries as a power source of low-power electronics, such as pressure sensors and thermometers. Tire pressure monitoring system (TPMS) is a key device in preventing a flat tire, which is one of the most frequent causes of car accidents. In U.S.A., European Union and a number of Asian countries are currently considering the implementation of TPMS-related legislation. The existing TPMS are powered by a battery, but there are drawbacks to these batteries, such as their limited durability and pollution of the environment. For this reason, this thesis is aimed at developing a power generator for TPMS
    This study designed a weighted pendulum to harvest energy from a rotating wheel, which consisted of a pendulum and one or more weights. As an energy harvester applied in TPMS, a normal pendulum cannot oscillate with a large angle at any wheel speed. In this study, the well-weighted pendulum helped the pendulum to adjust its natural frequency to meet the wheel rotation frequency. Therefore, the well-weighted pendulum is able to oscillate at various wheel speeds with a large angle and angular velocity. The kinetic energy produced was converted into electrical energy by electromagnetic induction, and a numerical study revealed that the well-weighted pendulum generated power of hundreds micro-Watts. The numerical results obtained from the analytical model of the well-weighted pendulum were in good agreement with the experimental results in both the swing angle and the power generation. The models of power generation were derived by using Faraday's law of induction and Lorentz force law, which were followed by the numerical solutions performed to verify the correctness with experiments. Moreover, for enhancing the electromagnetic efficiency, a novel circular Halbach array disk has been presented to lighten 40 % of the coil layers in the power generation compared with the normal multipolar disk. To investigate the dynamic behavior and power generation of the weighted pendulum, a car wheel emulator was constructed. At an optimum external resistance, the power output of the well-weighted pendulum was approximately 300 to 550 micro-Watts at about 200 to 500 rpm. This performance demonstrated that this has the potential to replace the battery in TPMS.

    CONTENTS 摘要 2 ABSTRACT 3 CONTENTS 6 LIST OF FIGURES 8 LIST OF TABLES 12 CHAPTER 1 INTRODUCTION 13 1.1 Motivation 13 1.2 Literature Survey 14 1.2.1 Kinetic Energy-Harvesting Methods 14 1.2.1.1 Kinetic-to-Electric Energy Methods 18 1.2.1.2 Comparison of Vibration-to-Energy Devices 23 1.2.2 Wide-Bandwidth Energy-Harvesting Methods 24 1.2.2.1 Application of Tire Pressure Monitor System 25 1.2.2.2 Prior Work of Wide-Bandwidth Energy-Harvesting Methods 26 CHAPTER 2 DYNAMIC ANALYSIS OF WEIGHTED PENDULUM 29 2.1 Kinetic Energy in Wheel 29 2.2 Power Consumption of TPMS 31 2.3 Physical Model and Governing Equations 33 2.3.1 Weighted Pendulum by Specific Structure 33 2.3.2 Weighted Pendulum by Arbitrary Configurations 40 CHAPTER 3 SYSTEM ANALYSIS OF WEIGHTED PENDULUM 48 3.1 Numerical Simulation of Dynamic Responses 48 3.2 Approximate Solution and Jump Phenomenon Analysis 58 CHAPTER 4 MAGNETIC CIRCUIT AND POWER GENERATION ANALYSIS 66 4.1 Multipolar Magnetic Disk Analysis by Uniform Magnetic Field Assumption 66 4.2 Circular Halbach Array Disk Analysis Considered Magnetic Field Distribution 71 4.3 Numerical Results for Weighted Pendulum in Power Generation 79 CHAPTER 5 EXPERIMENT OF WEIGHTED PENDULUM FOR HARVESTING ENERGY 83 5.1 Results of Dynamic Behavior 84 5.2 Results of Power Generation 88 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 96 6.1 Conclusions 96 6.2 Future Work 97 REFERENCES 102

    REFERENCES
    [1] P. Harrop and R. Das, Energy Harvesting and Storage for Electronic Devices 2009-2019, IDTechEx., (2009).
    [2] C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for Microsystems, Sensors Actuators A, 52 (1996) 8–11.
    [3] A. S. Holmes, G. Hong, and K. R. Pullen, “Axial-flux Permanent Magnet Machines for Micropower Generation,” Journal of Microelectromechanical Systems, vol. 14, no. 1, 2005, pp. 54-62.
    [4] E. Bouendeu, A. Greiner, P. J. Smith, and J. G. Korvink, “A Low-Cost Electromagnetic Generator for Vibration Energy Harvesting,” IEEE Sensors Journal, vol. 11, no. 1, Jan. 2011, pp. 107-113.
    [5] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright and V. Sundararajan, Improving power output for vibration-based energy scavengers, IEEE Pervas. Comput., 4 (2005) 28-36.
    [6] H.A. Sodano, D.H. Inman and G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock Vib., Dig. 3 (2004) 197-205.
    [7] S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003-2006), Smart Mater. Struct., 16 (2007) 1-21.
    [8] S.J. Jeong, M.S. Kim, J.S. Song and H. Lee, Two-layered piezoelectric bender device for micro-power generator, Sensors and Actuators A., 148 (2008) 158-167.
    [9] S. P. Beeby, M. J. Tudor, and N. M. White, Energy Harvesting Vibration Sources for Microsystems Applications, Measurement and Technology, 17 (2006) 175–195.
    [10] Y. Jeon, R. Sood, L. Steyn, and S. G. Kim, Energy Harvesting MEMS Devices Based on d33 Mode Piezoelectric Pb(Zr,Ti)O3 Thin Film Cantilever, CIRP Seminar on Micro and Nano Technology Copenhagen, Denmark November (2003) 13-14.
    [11] J. A. Paradiso and T. Starner, Energy Scavenging for Mobile and Wireless Electronics, IEEE Pervasive Computing, 4(1) (2005) 18–27.
    [12] S. Roundy, P. K. Wright, and J. Rabaey, A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes, Computer Communications, 26 (2003) 1131–1144.
    [13] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan and J. Lang, Vibration-to-Electric Energy Conversion, Low Power Electronics and Design Proceedings, (1999) 48 – 53.
    [14] D. P. Arnold, Review of Microscale Magnetic Power Generation, IEEE Transactions on magnetics, vol. 43, no. 11, (November 2007).
    [15] Kinetron MG Series Microgenerator Data Sheets [Online] Available:http://www.kinetron.nl/
    [16] C.T. Pan and T.T. Wu, Development of a rotary electromagnetic microgenerator, J. Micromech. Microeng., 17 (2007) 120-128.
    [17] P.H. Wang, X.H. Dai, D.M. Fang and X.L. Zhao, Design, fabrication and performance of a new vibration-based electromagnetic micro power generator, Microelectronics Journal, 38 (2007) 1175–1180.
    [18] Perpetuum PMG17-100 Data Sheet [Online]. Available:http://www.perpetuum.co.uk/.
    [19] J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics, Pervasive Comput., vol. 4, no. 1, (2005) 18–27.
    [20] D. Spreemann, Y. Manoli, B. Folkmer, and D. Mintenback, Non-resonant vibration conversion, J. Micromech. Microeng., vol. 16, no. 9, (Sept. 2006) 169–173.
    [21] A. M. Wickenheiser, T. Reissman, W. J. Wu and E. Garcia, “Modeling the effects of electromechanical coupling on energy storage through piezoelectric energy harvesting,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 3, June 2010, pp. 400-411.
    [22] S. J. A. Koh, C. Keplinger, T. Li, S. Bauer and Z. Suo, “Dielectric Elastomer Generators: How Much Energy Can Be Converted?,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 1, Feb. 2011, pp. 33-41.
    [23] A. Khaligh, P. Zeng, and C. Zheng, “Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, March 2010.
    [24] R. Matsuzaki and A. Todoroki, Wireless monitoring of automobile tires for intelligent tires, Sensors, 8 (2008) 8123-8138.
    [25] G. Hatipoglu, and H. Urey, “FR4-based electromagnetic energy harvester for wireless tire sensor nodes,” Proceedings of the Eurosensors XXIII conference, Procedia Chemistry 1, 2009, pp. 1211-1214.
    [26] M. Lohndorf, M. Löhndorf, T. Kvisterøy, E. Westby and E. Halvorsen, Evaluation of energy harvesting concepts for tire pressure monitoring systems, Technical Digest PowerMEMS 2007 Freiburg, Germany, (2007) 331-334.
    [27] S. Roundy, Energy harvesting for tire pressure monitoring systems: design considerations, Technical Digest PowerMEMS 2008, Sendai, Japan, (2008) 1-6.
    [28] S.M. Shahruz, Design of mechanical band-pass filters for energy scavenging, Journal of Sound and Vibration, 292 (2006) 987–998.
    [29] E.S. Leland and P.K. Wright, Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload, Smart Mater. Struct., 15 (2006) 1413–1420.
    [30] M. Lallart, S. R. Anton and D. J. Inman, “Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 9, 2010, pp. 897-906.
    [31] M. Marzencki, M. Defosseux, and S. Basrour, “MEMS Vibration Energy Harvesting Devices With Passive Resonance Frequency Adaptation Capability,” Journal of Microelectromechanical Systems, vol. 18, no. 6, 2009, pp. 1444-1453.
    [32] M. O. Mansour, M. H. Arafa, and M. Megahed, “Resonator with magnetically adjustable natural frequency for vibration energy harvesting,” Sensors and Actuators A, 163, 2010, pp. 297-303.
    [33] L. Gu, and C. Livermore, “Passive self-tuning energy harvester for extracting energy from rotational motion,” Applied Physics Letters, 97, 2010, 081904.
    [34] D.G. Lee, G.P. Carman, D. Murphy and C. Schulenburg, Novel micro vibration energy harvesting device using frequency up conversion, TRANSDUCER & EUROSENSORS ’07, The 14th International Conference on Solid-state Sensors, Actuators and Microsystems, (June 2007) 10-14.
    [35] M. Daminakis, Jan Goethals and Jeffrey Kowtke, “Enhancing Power Harvesting using a Tuned Auxiliary Structure,” Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, (2005) 825-834.
    [36] J. M. Youngsman, T. Luedeman, D. J. Morris, M. J. Anderson and D. F. Bahr, “A model for an extensional mode resonator used as a frequency-adjustable vibration energy harvester,” Journal of Sound and Vibration, 329, 2010, pp. 277-288.
    [37] I. Sari, T. Balkan and H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations,” Sensors and Actuators A., 145-146 (2008) 405-413.
    [38] B. Marinkovic, and H. Koser, “Smart sand - a wide bandwidth vibration energy harvesting platform,” Applied Physics Letters, 94, 103505, 2009.
    [39] C. L. Zhang, and W. Q. Chen, ”A wideband magnetic energy harvester,” Applied Physics Letters, 96, 123507, 2010.
    [40] S. Stanton, C. McGehee, and B. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting, Applied Physics Letters, 95 (2009) 174103.
    [41] E. Dallago, M. Marchesi and G. Venchi, “Analytical model of a vibrating electromagnetic harvester considering nonlinear effects,” IEEE Transactions on Power Electronics, vol. 25, no. 8, Aug. 2010, pp. 1989-1997.
    [42] B. J. Bowers and D. P. Arnold, “Spherical, rolling magnet generators for passive energy harvesting from human motion,” J. Micromech. Microeng., Vol. 19, No. 9, 2009, 094008.
    [43] S. R. Platt, S. Farritor and H. Haider, “On low-frequency electric power generation with PZT ceramics,” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 2, April 2005, pp. 240-252.
    [44] Y. J. Wang, C. D. Chen and C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A, vol. 159, 2010, pp. 196-203.
    [45] S. S. Rao, Mechanical vibrations, Fourth edition, Pearson Prentice Hall, New Jersey, (2004) 901-903.
    [46] D. W. Jordan and P. Smith, Nonlinear ordinary differential equation an introduction for scientists and engineers, Fourth edition, Oxford, (2007), 225-233.
    [47] J. Vanderlinde, Classical Electromagnetic Theory, Second edition, Springer, 2004.
    [48] L. R. Moskowitz, Permanent magnet design and application handbook, Second edition, Krieger, (1995).
    [49] D. J. Griffiths, Introduction to electrodynamics, Third Edition, Prentice Hall International Inc, (1999), 294-297.
    [50] Z. Wang, B. Wang, M. Wang, H. Zhang and W. Huang, “Model and experimental study fo permanent magnet vibration-to-electrical power generator,” IEEE Transactions on applied superconductivity, vol. 20, no. 3, 2010, pp.1110-1113.
    [51] N. G. Stephen, “On energy harvesting from ambient vibration,” Journal of Sound and Vibration, vol. 293, 2006, pp. 409–425.
    [52] http://www.e90post.com/forums/showthread.php?t=347003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE