簡易檢索 / 詳目顯示

研究生: 廖珮芸
Pei-Yun Liao
論文名稱: 以共沈法合成鋰鎳鈷錳氧正極材料
LiNi1-x-yCoyMnxO2 Prepared by a Co-precipitation Method as Cathode Material
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 56
中文關鍵詞: 鋰離子電池鋰鎳氧共沈法鋰鎳鈷錳氧
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰鎳氧因其具有價格低、電容量高的特質,成為最具潛力取代傳統應用於鋰離子電池中鋰鈷氧的正極材料。但因鋰鎳氧的合成不易,本研究嘗試以加入鈷、錳等過渡元素,來穩定其結構與性質。
    在本篇論文中,採用共沈法合成氫氧化鎳鈷錳先驅物,再將其與碳酸鋰混合,高溫氧氣的環境下煆燒得到鋰鎳鈷錳氧正極材料。由熱分析的結果可以推斷出在750□C左右,六方晶鋰鎳鈷錳氧材料已經形成,其總質量損失約為30%。由電子顯微鏡及雷射散佈儀之分析顯示,粉體是由約0.3到1 □m的初始晶粒聚集而成的凝團,其大小約為5到15 □m,且初始晶粒的大小會隨著壓燒溫度的提高而上升。由價數的分析顯示,錳的添加會對鎳的價數產生影響,錳的量越多,其二價鎳的量亦隨之增加。對照X光繞射分析結果可以看出,在二價鎳越多的材料中,其陽離子錯位的情形變的嚴重,初始電容量亦會下降。
    本製程所合成之電池電化學性質係採用金屬鋰為參考負極、LiPF6為電解液搭配所合成的正極材料來做充放電循環測試。經測試後,在900□C下煆燒得到的LiNi0.6Co0.25Mn0.15O2具有非常優異的電性表現,其初始電容為178 mAh/g,經過20圈循環後仍維持98%的電容量。以高電流下做充放電測試,其循環性亦維持在95%以上。由本研究可以顯示,鋰鎳鈷錳氧正極材料在鋰離子電池上的應用具有極大的潛力。


    LiNiO2 is the most attractive material with the lower cost and higher discharge capacity to replace LiCoO2 material in Li-ion battery. Nevertheless, stoichiometric LiNiO2 is difficult to synthesize, transition metals such as cobalt and manganese are added to stabilize the structure and to improve the properties.
    In this study, the Ni1-x-yCoyMnx(OH)2 precursor was obtained by the chemical co-precipitation method. Ni1-x-yCoyMnx(OH)2 and Li2CO3 were thoroughly mixed and then calcined at elevated temperature in the flowing oxygen atmosphere to obtain the LiNi1-x-yCoyMnxO2 cathode material. The thermal analysis showed that the hexagonal structure LiNi1-x-yCoyMnxO2 was formed at 750 oC, and the total weight loss was around 30%. On the basis of the laser scattering data and FESEM micrographs, larger agglomerates (5-15□□m) of rather small primary particles (0.3-1 □m) were revealed. For increasing calcined temperature, the particle size of primary grain increased. The XPS measurement demonstrated that Mn dopant had an effect upon the valence number of Ni. As the Mn content increased, the amount of Ni2+ increased. Compared with XRD data, it was argued that the cation mixing was attributed to the increasing of the Ni2+ ion content and the resulting initial capacity was decreased accordingly.
    The electrochemical behavior of LiNi1-x-yCoyMnxO2 powder was examined by using two-electrode test cells consisted of a cathode, metallic lithium anode, and an electrolyte of 1M LiPF6 in a 1:1 (volume ratio) mixture of EC/DMC. Cyclic charge/discharge testing of the coin cells, LiNi0.6Co0.25Mn0.15O2 calcined at 900oC exhibited the best electrochemical characteristics, in which the initial discharge capacities attained 178mAh/g and the capacity retention was 98.1% after 20 cycling tests. After cycled at 1C rate, LiNi0.6Co0.25Mn0.15O2 showed excellent capacity retention around 95.7% after 20 cycles. It is demonstrated that LiNixCoyMn1-x-yO2 electrode should exhibit great potential for the future application in lithium-ion battery cathode.

    List of Tables iii List of Figures iv Abstract vii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2. 1 Evolution of LiNi1-x-yCoyMnxO2 material 4 2. 2 Synthesis methods of LiNi1-x-yCoyMnxO2 5 2. 3 The properties of LiNi1-x-yCoyMnxO2 cathode material 6 2. 3.1 Structure and phase research 6 2. 3.2 Tap density 6 2.3.3 Thermal stability 7 2. 3.4 The valence number of cations 7 Chapter 3 Experimental Procedure 14 3.1 Powder preparation by co-precipitation 14 3.2 Characterization and analysis 16 3.2.1 Thermal analysis 16 3.2.2 Phase identification 16 3.2.3 Particle morphology and size distribution 16 3.2.4 Valence number 17 3.2.5 Electrochemical characterization 17 Chapter 4 Result and Discussion 20 4.1 LiNi0.6Co0.4-xMnxO2 system 20 4.1.1 Thermal analysis 20 4.1.2 Phase identification 20 4.1.3 Particle size and morphology 21 4.1.4 Electrochemical property 23 4.2 LiNi0.75-xCo0.25MnxO2 system 38 4.2.1 Phase identification 38 4.2.2 Microstructure 39 4.2.3 Valence number 40 4.2.4 Electrochemical performance 41 Chapter 5 Conclusion 52 References 54

    [1] A. V. Fraioly, W. A. Barber, and A. M. Feldman, R. S. Patent 3, 551 (1970) 205.
    [2] J. P. Gabano, French Patent 1, 583 (1969) 804.
    [3] J. Moser, U. S. Patent 3, 660 (1972) 163.
    [4] A. A. Schneider and J. Noser, U. S. Patent 3, 674 (1972) 562.
    [5] M. S. Whittingham and M. B. Dines, J. Electrochem. Soc., 124 (1977) 1388.
    [6] J. P. Gabano, Prog. Battery Solar Cells, 9 (1989) 149.
    [7] D. L. Maricle and J. P. Mohns, U. S. Patent 3, 567 (1971) 515.
    [8] K. Brandt, J. Power Sources, 18 (1986) 117.
    [9] K. Mizushima, P. C. Jones, P. J. Wisemen, and J. B. Goodenough, Mat. Res. Bull, 15 (1980) 783.
    [10] J. Hajek, French Patent, 8 (1949) 10.
    [11] A. Yamada, M. Tanaka, K. Tanaka and K. Sekai, J. Power Sources, 82 (1999) 73.
    [12] Y. I. Jang, B. Y. Huang, H. F. Wang, D. R. Sadoway and Y. M. Chiang, J. Electrochem. Soc., 146[9] (1999) 3217.
    [13] J. Moser, U. S. Patent 3, 660 (1972) 163.
    [14] A. A. Schneider and J. Noser, U. S. Patent 3, 674 (1972) 562.
    [15] M. S. Whittingham, Science, 192 (1976) 1126.
    [16] J. M. Amarilla, J. L. M. de Vidales and R. M. Rojas, Solid State Ionics, 127 (2000) 73.
    [17] D. Peramunage and K. M. Abraham, J. Electrochem. Soc., 145 (1998) 1131.
    [18] K. Mizushima, P. C. Jones, P. J. Wisemen, and J. B. Goodenough, Mat. Res. Bull, 15 (1980) 783.
    [19] K. Brandt, J. Power Sources, 18 (1986) 117.
    [20] J. Morales, C. Perez-Vicente and J.L. Tirado, Mater, Res. Bull. 25 (1990) 623.
    [21] C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne and L. Fournès, Electrochimica Acta 45 (1999) 243.
    [22] K. Matsumoto, R. Kuzuo, K. Takeya and A. Yamanaka, J. Power Sources 81 (1999) 558
    [23] S. Panero, P. Reale, F. Bonino, B. Scrosati, M. Arrabito, S. Bodoardo and D. Mazza, Solid State Ionics 128 (2000) 43
    [24] M. Okada, K. Takahashi and T. Mouri, J. Power Sources 68 (1997) 545.
    [25] C. C. Chang, N. Scarr and P. N. Kumta, Solid State Ionics 112 (1998) 329.
    [26] M. Yoshio, H. Noguchi, J. Itoh, M. Okada and T. Mouri, J. Power Sources 90 (2000) 176.
    [27] Y. Sun, C. Ouyang, Z. Wang, X. Huang and L. Chen, J. Electrochem. Soc. 161 (2004) 504.
    [28] B. J. Hwang, Y. W. Tsai, C. H. Chen and R. Santhanam, J. Mater. Chem. 13 (2003) 1962.
    [29] M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, J. Electrochem. Soc., 139 (1992) 363.
    [30] A. Van der Ven, M. K. Aydinol and G. Ceder, Physical Review B, 58 (1998) 1975.
    [31] Y. M. Choi, S. I. Pyun, S. I. Moon, Solid State Ionics 89 (1996) 43
    [32] J. Ying, C.Wan, C. Jiang and Y. Li, J. Power Sources 99 (2001) 78
    [33] Z. Chang, G. Li, Y. Zhao, J. Chen and Y. Ding, J. Power Sources 74 (1998) 252
    [34] C. C. Yang, Int. J. Hydrogen Energy 27 (2002) 1071.
    [35] S. Jouanneau, D. D. MacNeil, Z. Lu, S.D. Beattie, G. Murphy and J. R. Dahn, J. Electrochem. Soc. 150 (2003) 1299.
    [36] N. Yabuuchi and T. Ohzuku, J. Power Sources 119-121 (2003) 171
    [37] S. Jouanneau and J. R. Dahn, Chem. Mater. 15 (2003) 495.
    [38] Handbook of Chemistry and Physics (The Chemical Rubber Co. OH. 83th edition).
    [39] A. Lundblad and B. Bergman, Solid State Ionics 96 (1997) 173.
    [40] A. R. Armstrong and P. G. Bruce, Nature 381 (1996) 499.
    [41] G. X. Wang, S. Bewlay, J. Yao, Y. Chen, Z. P. Guo, H.K. Liu and S.X. Dou, J. Power Sources 119-121 (2003) 189.
    [42] R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik and J. Jamnik, J. Power Sources 119-121 (2003) 770.
    [43] P. Y. Liao and J. G. Duh, Key Engineering Materials, in press.
    [44] Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, MN (1995)
    [45] D. D. MacNeil, Z. Lu and J. R. Dahn, J. Electrochem. Soc. 149 (2002) 1332.
    [46] D. S. Ahn and M. Y. Song, J. Electrochem. Soc. 147 (2000) 874

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE