研究生: |
張桂惠 Chang Kuei-Hui |
---|---|
論文名稱: |
一位國小五年級教師將數學臆測融入教學實踐之行動研究 The Action Research Designed by A Teacher Using Mathematical Conjecturing Merged into the Teaching of A Fifth-Grader Class |
指導教授: | 林碧珍 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 146 |
中文關鍵詞: | 數學臆測任務設計 、數學臆測教學 、數學論證模式 、論證元素 |
外文關鍵詞: | design of mathematical conjecturing tasks, mathematical conjecturing teaching, the model of mathematical argumentation, argumentative elements |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是描述研究者將其所設計的數學臆測任務融入課堂教學的實踐歷程。透過行動研究法,探討在設計臆測任務和臆測教學過程中所遭遇的困境、解決策略、影響研究者改變策略的因素以及研究者在行動歷程的反思。
研究者以任教的五年級班級為研究場域,並參與跨校教師數學專業成長團,以K版本教材設計「面積」及「小數乘法」兩單元的數學臆測任務,並依發展數學論證的臆測教學模式(觀察造例組織、發現關係提出猜想、驗證猜想、猜想一般化及證明一般化)進行教學。研究期間透過分析教材、教學現場錄影、學生解題記錄、成長團專業對話、與諍友討論以及研究者觀課日誌、教學省思等資料的蒐集與分析,修正策略再設計下一次的任務並進行教學。
研究結果發現:在發展數學論證模式的臆測教學下,透過數學臆測任務幫助學生建立論證元素的資料和證據,以作為學生在數學臆測教學的論證過程中提出反駁、支持的依據。因此,臆測任務的設計應能提供學生形成多元策略或觀察多元數字關係,並融入臆測活動目標,讓學生透過造例建立資料,並觀察資料證據提出論述,同時還應考量整體臆測流程,以便在這五個階段中建立起環環相扣的關係。而在臆測教學歷程中,面對處理學生猜想的困境,應透過討論前針對猜想的分類、挑選、真偽命題的分析及安排討論順序等策略來因應。在進行驗證猜想前,應釐清檢驗與驗證的意義與做法,並於猜想一般化的過程,幫助學生將自然語言提升至數學語言,而在證明一般化教學時,應鼓勵學生跳脫窮舉法的證明,將學生的證明層次做提升。
最後,本研究對設計數學臆測任務、數學臆測教學及未來研究提出建議:在設計臆測任務方面,先思考臆測活動目標,再從本研究所提的考量面向,思索如何透過數學臆測任務幫助學生建立資料,再進而隨任務需求做調整。在數學臆測教學方面,則建議先熟悉各臆測階段的意義與做法。而未來研究則可往不同性質臆測任務是否有不同設計策略,以及針對數學臆測融入教學上對學生論證能力提升的比較與差異,做更深入的研究。
This study describes the conduction of mathematical conjecturing tasks merging into teaching designed by a fifth-grader teacher. The difficulties, strategies for solving problems, the factors of changing researcher’s strategies and the researcher’s reflection during this study have been explored throughout this action research.
The author focused on a fifth grader’s class as a realm of this research. Engaged in multi-school professional progressive team, the teaching activities followed by the conjecturing models of mathematical argumentation development (observing the cases, searching the patterns and formulating a conjecture, validating the conjecture, generalizing the conjecture and justifying the generation) had been implemented using K version teaching materials with “area” and “decimal multiplication”, respectively. The strategies would be modified and the tasks were redesigned for the next teaching activities in this study by data collection and analysis, audio- and video-recording of the teaching, the record of students’ worksheets, and so on.
The finding was that the students could build up the database and warrant of argumentative elements through conjecturing tasks under the conjecturing teaching of developing mathematical argumentation model, leading to propose the proof of rebuttal and support in the conjecturing teaching of argumentation process. Therefore, the design of conjecturing tasks should provide the students to have the multi- strategy formulation or the multi-number correlation observation. In the conjecturing teaching, the students’ dilemma of formulating conjecture could be handled by classifying the conjectures before teaching, the analysis of true/false statements, the goal selection of conjecturing teaching, and the strategy of arrangement for discussion order. In the process of generalizing the conjectures, it would help student enhance the mathematical terminology from common languages and elevate the hierarchy of proof level by encouraging them to use other proofs instead of making cases.
Finally, in the design of conjecturing tasks aspect, one can deliberate how to help students create the database and proof through conjecturing tasks and do further adjustment depending on different tasks. In the conjecturing teaching aspect, the different design strategies with respect to various properties of conjecturing tasks, and the comparison and discrepancy for students with argumentative capability on the conjecturing merging into mathematical teaching can be further studied in the future.
中文文獻
林福來(2006)。整合計畫:青少年數學論證「學習與教學」理論之研究-總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001-MY4),未出版。
林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院 國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001), 未出版。
林福來、楊凱琳、陳建誠、許慧玉、陳韻如、陳逸超(2010)。數學臆測活動的設計、教學與評量:總計畫(3/3)。行政院國家科學委員會補助專題研究計畫期中報告。(計畫編號NSC 96-2521-S-003-001-MY3),未出版。
林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC 99-2511-S-134-005MY3),未出版。
林碧珍、周欣怡(2013)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。「第29屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍、馮博凱(2013 )。國小學生反駁錯誤命題的論證結構─以速率單元為 例。「第 29 屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題 研究計畫。(計畫編號:NSC 100-2511-S-134-006-MY3),未出版。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
徐利治、王前(1989)。數學與思維。湖南:湖南教育出版社。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
陳英娥(1998)。數學臆測:思維與能力的研究。未出版碩士論文。國立臺灣師範大學科學教育究所。
陳英娥(2002)。教室中的數學論證之研究。教育研究資訊,10(6),111-132。
陳惠邦(1998)。教育行動研究。台北:師大書苑。
蔡清田(2000)。教育行動研究。台北:五南。
蔡清田(2011)。行動研究的理論與實踐。國家文官學院T&D, 118,1-20。
吳明隆(2001)。教育行動研究導論-理論與實務。台北市:五南
教育部(1975)。國民小學課程標準。台北市:中正。
教育部(2001)。國民中小學九年一貫課程暫行綱要。台北市:教育部。
教育部(2003)。國民中小學九年一貫課程綱要。台北市:教育部。
曾美焉(2014)。一位高年級教師設計數學臆測偽命題培養學生的反駁能力之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
彭淑芬(2013)。探究國小六年級數學學習高成就學童之臆測思維─以比與比值問題 為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
馮博凱(2014)。國小三年級學生論證之比較研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
鍾雅芳(2012)。規律性問題下六年級學生臆測思維歷程的探討。未出版碩士論文。國立新竹教育大學數理教育研究所。
蕭淑惠(2010)。實施以臆測為中心的教學探討四年級學生臆測思維歷程與主動思考 能力展現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
英文文獻
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed), Mathematics, teachers and children, (pp.216-235). Stoughton: Hodder education.
Cantlon,D.(1998).Kids+conjecture=mathematicspower.Teaching Children
Mathematics, 5(2), 108-112.
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, A. (2007). The
conjecturing process: Perspectives in theory and implications in practice.
Journal of Teaching and Learning, 5(1), 55–72.
Davis, P. J., Hersh, R., & Marchisotto, E. A. (1995). The mathematical experience. Boston:Birkhauser. Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematics students’ performances. In O. Zaslavsky (Eds.), Proceedings of the 23nd conference of the international group for the psychology of mathematics education (Vol.2, pp. 273-288).Haifa, Israel: PME.
Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematics students’ performances. In O. Zaslavsky (Eds.), Proceedings of the 23nd conference of the international group for the psychology of mathematics education (Vol. 2, pp. 273-288). Haifa, Israel: PME.
Doyle, W. (1988). Work in mathematics classes: The context of students' thinking
during instruction. Educational Psychologist, 23(2), 167–180.
Hanna, G.(1990). Some Pedagogical Aspects of Proof. Interchange, 21(1), 6-13.
Knipping, C. (2003). Argumentation structures in classroom proving situations. In M. A. Mariotti (Ed.), Proceedings of the third conference of the European society in mathematics education (unpaginated).
Knipping, C. & Reid, D. A.,(2013). Revealing structures of argumentations in classroom proving processes. In A. Andrew & I. J. Dove (Eds.), The Argument of Mathematics (pp.119-146). Dordrecht: Springer.
Krummheuer, G.(1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Lawrence Erlbaum.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82.
Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.
Lin, F. L., & Yu, J. W. (2005).False proposition-As a means for making conjectures in mathematics classrooms. Paper presented at the Asian Mathematics Conference 2005, Singapore July 20-23.
Lin, F.L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. Keynote address in the APEC-TSUKUBA International Conference. Japan, Dec 2-7.
Mason, J., Burton, L., & Stacey, K. (1985). Thinking mathematically(Rev. ed.). New York: Addison Wesley.
National Council of Teachers of Mathematics(NCTM). Principles and standards for
school mathematics. Reston, VA: NCTM, 2000.
Polya, G. (1954). Mathematics and plausible reasoning: Vol. I. Induction and
analogy in mathematics. Princeton, NJ: Princeton University Press.
Reid, D.A.(2002). Conjectures and refutations in grade 5 mathematics.Journal for Research in Mathematics Education, 33(1), 5–29.
Reid, D. A., & Knipping, C. (2010). Argumentation structures. In D. A. Reid & C. Knipping (Eds.), Proof in mathematics education: Research, learning and teaching (pp. 179-192). Rotterdam: Sense Publishers.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289–321.
Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press