簡易檢索 / 詳目顯示

研究生: 褚亮翬
Liang-Hui Chu
論文名稱: 建立癌症擾動蛋白質的交互作用細胞凋零網路於藥物標靶發現
Construction of Cancer-Perturbed Protein-Protein Interaction Network of Apoptosis for Drug Target Discovery
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
中文關鍵詞: 蛋白質網路細胞凋亡
外文關鍵詞: protein-protein interaction, apoptosis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    癌症主要是由於oncogene和tumor suppressor gene的突變及失調導致一連串下游訊號傳遞的改變。因此,在癌細胞監控蛋白質的交互作用,並與正常細胞比較,能夠幫助我們更瞭解正常細胞變成癌細胞的過程。
    結果
    藉由人類yeast-two-hybrid的實驗和Himap, HPRD, BIND等資料庫,我們可以先建立粗略的網路(rough protein-protein interaction network)。由於有許多錯誤存在於這些資料庫,我們使用非線性隨機模型,maximum likelihood 參數估測,和Akaike Information Criteria (AIC) 去更進一步的刪除其中的假的交互作用。藉由比較癌細胞和正常細胞的機制,我們可以更進一步的瞭解細胞凋亡(apoptosis),並找到可能的癌症藥物標靶(cancer drug target)。而我們的方法也可應用在動態的交互網路,例如在caspase蛋白質網路中尋找其中心(hub)。
    結論
    我們提出的動態模型以及AIC的方法,結合了網路生物學與系統生物學,不但成功的建立癌症的蛋白質網路,亦在細胞凋零的路徑中找到可能的藥物標靶,同時這方法也可應用在其他的蛋白質網路,例如細胞週期。

    第一章 簡介

    由於基因體以及蛋白質體的研究,系統生物學能夠幫助解開癌細胞的蛋白質網路。癌症的起因包括多個基因的突變,以及蛋白質網路的改變。在許多資料庫與實驗的幫助下,藉由我們所發展出來的方法,能夠比較蛋白質網路在癌細胞和正常細胞的不同,例如細胞凋亡。逃脫細胞凋亡是癌細胞生長的一個重要的機制,而比較蛋白質網路在癌細胞與正常細胞的不同,以系統的方式尋找適合的藥物標靶,正是系統生物學在癌症標靶藥物的重要應用。
    第二章 結果與討論

    我們以參與細胞凋亡的蛋白質為中心,往外擴大蛋白質網路,並藉由許多網路資料庫我們可先建立粗略的網路。藉由基因晶片的實驗,我們可以建立較為精確的癌細胞與正常細胞的蛋白質網路比較其不同,解釋細胞凋亡的生物意義,並找到可能的藥物標靶和他文獻比較。而我們也利用我們的方法成功的找到動態的蛋白質網路中心點。

    第三章 結論

    我們不但成功的建立凋亡的蛋白質網路,比較癌細胞和正常細胞的細胞不同,以系統化的方式解釋細胞凋亡,並找到可能的癌症藥物標靶。動態的蛋白質網路的中心點也藉由我們的方法得到印證。而這正是系統生物學於癌症藥物設計上的重要應用。

    第四章 方法

    藉由許多大規模的生物實驗和網站,我們可先建立粗略的網路。利用非線性隨機模型代入實驗數據,利用系統估測的方法估參數,並利用統計方法Akaike information criterion (AIC)得到龐大的交互作用資料庫,並藉由邏輯AND的關係決定是否保留此交互作用,進而得到癌細胞和正常細胞的蛋白質網路。


    Abstract
    Background
    Cancer is known to occur due to mutations of oncogenes or tumor suppressor genes, which alter a series of downstream signal transduction pathways at molecular level. Therefore, inspecting interactive behaviors of proteins in cancer cells and comparing them with those in normal cells to obtain cancer-perturbed protein network can shed light on how a normal cell transforms into a cancer cell.
    Results
    Rough protein-protein interaction networks of apoptosis in cancer and normal cells are constructed according to human yeast-two-hybrid datasets and websites. Owing to high false positive rates in these large-scale interactome, the nonlinear stochastic model, maximum likelihood parameter estimation and Akaike Information Criteria (AIC) are employed to truncate fake protein-protein interactions of rough protein interaction networks. By comparing protein-protein interaction networks of apoptosis between HeLa cancer cells and normal cells, we can obtain cancer-perturbed networks and gain insight into the mechanism of apoptotic network in human cancer, which helps discovery of cancer drug targets. Furthermore, static and dynamic hubs in protein-protein interaction networks in caspase activation can be derived, too.

    Abstract………………………………………………………………………………..i Acknowledgements………………………………………………………….............iii Contents……………………………………………………………………...............iv Chapter 1 Introduction………………………………………………………………1 Chapter 2 Results and Discussion…………………………………………………...5 2.1 Construction of cancer-perturbed protein-protein interaction network in apoptosis……5 2.2 Cancer-perturbed apoptosis mechanism at systems level……………………………….7 2.2.1 Extrinsic pathway, intrinsic pathway and crosstalk......…………………………….8 2.2.2 Caspases family and caspases regulators………………………………..………….9 2.2.3 Regulation of apoptosis at systems level…………………………………………10 2.2.4 Apoptosis and cell cycle regulation………………………………………………10 2.3 Drug targets identification using the proposed cancer-perturbed protein……………..11 2.3.1 Intrinsic pathway: BCL2, BAX, BCL2L1, and CYCS……………………………13 2.3.2 Extrinsic pathway and crosstalk: TNF, TNFRSF6, and BID……………………14 2.3.3 Common pathway: CASP3 and CASP9………………………………………….14 2.3.4 Apoptosis regulators: TP53, MYC, CFLAR, and EGFR…………………………15 2.3.5 Stress-induced signaling and others: MAPK1, MAPK3, CDKN1A and CCND1..15 2.3.6 Prediction of cancer drug targets by degree of perturbation………………………16 2.4 Caspases activation through static and dynamic hubs……………………………. …...17 Chapter 3 Conclusions……………………………………………………………...19 Chapter 4 Methods………………………………………………………………….20 4.1 Constructing rough protein-protein interaction network………………………………20 4.2 Selecting and processing experimental data…………………………………...............21 4.3 Nonlinear stochastic interaction model of rough protein interaction networks…..........22 4.4 Identification of interactive abilities of rough protein-protein interaction network…...24 4.5 Truncation of rough protein-protein interaction networks……………………………..27 Bibliography………………………………………………………………………...30 List of Table Table 1 - Protein targets ranked by sum of perturbation degree 8 in Figures 2A and 2B ………………………………………………………………………..……….34 List of Figures Figure 1 - Global protein-protein interactions of apoptosis between cancer and normal cells…………………………………………………………………….....35 Figure 2 - Cancer-perturbed apoptotic protein-protein interaction networks………...36 Figure 3 - Flow chart for drug target identification from cancer-perturbed protein-protein interaction network via microarray data………................37 Figure 4 - Dynamic protein-protein interactions in caspase formation………………38 Figure 5 - Graphical representation of the individual protein interactions and the cooperative protein interactions…………………………..……………...39 List of Supplementary Tables Supplementary Table 1 Global apoptotic protein-protein interactions in cancer and normal cells Supplementary Table 2 Gain-of-function proteins in Figure 2A ranked by degree of perturbation Supplementary Table 3 Loss-of-function proteins in Figure 2B ranked by degree of perturbation Supplementary Table 4 Dynamic caspases protein-protein interactions in cancer cells Supplementary Table 5 Dynamic caspases protein-protein interactions in normal cells

    Bibliography
    1. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM: Mining for regulatory programs in the cancer transcriptome. Nat Genet 2005, 37:579-583.
    2. Jonsson PF, Bates PA: Global topological features of cancer proteins in the human interactome. Bioinformatics 2006, 22:2291-2297.
    3. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.
    4. Fesik SW: Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005, 5:876-885.
    5. Hood L, Heath JR, Phelps ME, Lin B: Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306:640-643.
    6. Hengartner MO: The biochemistry of apoptosis. Nature 2000, 407:770-776.
    7. Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004, 5:897-907.
    8. Cusick ME, Klitgord N, Vidal M, Hill DE: Interactome: gateway into systems biology. Hum Mol Genet 2005, 14 Spec No. 2:R171-181.
    9. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430:88-93.
    10. Ekman D, Light S, Bjorklund AK, Elofsson A: What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 2006, 7:R45.
    11. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, et al: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
    12. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, et al: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415:180-183.
    13. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, et al: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440:637-643.
    14. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437:1173-1178.
    15. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al: A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122:957-968.
    16. Bader GD, Betel D, Hogue CW: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 2003, 31:248-250.
    17. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, et al: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.
    18. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al: IntAct: an open source molecular interaction database. Nucleic Acids Res 2004, 32:D452-455.
    19. Hu P, Bader G, Wigle DA, Emili A: Computational prediction of cancer-gene function. Nat Rev Cancer 2007, 7:23-34.
    20. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, et al: Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 2006, 38:285-293.
    21. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J: Cancer: a Systems Biology disease. Biosystems 2006, 83:81-90.
    22. Chiang JH, Chao SY: Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms. BMC Bioinformatics 2007, 8:91.
    23. Danial NN, Korsmeyer SJ: Cell death: critical control points. Cell 2004, 116:205-219.
    24. Riedl SJ, Salvesen GS: The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 2007, 8:405-413.
    25. Chen BS, Wang YC: On the attenuation and amplification of molecular noise in genetic regulatory networks. BMC Bioinformatics 2006, 7:52.
    26. Rhodes DR, Chinnaiyan AM: Integrative analysis of the cancer transcriptome. Nat Genet 2005, 37 Suppl:S31-37.
    27. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM: Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 2005, 23:951-959.
    28. Breitkreutz BJ, Stark C, Tyers M: Osprey: a network visualization system. Genome Biol 2003, 4:R22.
    29. Cory S, Adams JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002, 2:647-656.
    30. Chen BS, Li CH: Analysing microarray data in drug discovery using systems biology. Exper Opin Drug Discov 2007, 2:755-768.
    31. Andersen MH, Becker JC, Straten P: Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 2005, 4:399-409.
    32. Ghobrial IM, Witzig TE, Adjei AA: Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005, 55:178-194.
    33. Lehninger AL, Nelson DL, Cox MM: Lehninger principles of biochemistry. 4th edn. New York: W.H. Freeman; 2005.
    34. Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol 2007, 8:275-283.
    35. Pelengaris S, Khan M, Evan G: c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002, 2:764-776.
    36. Wada T, Penninger JM: Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004, 23:2838-2849.
    37. Liu Y, Liu N, Zhao H: Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 2005, 21:3279-3285.
    38. Ben-Hur A, Noble WS: Kernel methods for predicting protein-protein interactions. Bioinformatics 2005, 21 Suppl 1:i38-46.
    39. Martin S, Roe D, Faulon JL: Predicting protein-protein interactions using signature products. Bioinformatics 2005, 21:218-226.
    40. Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D: Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 2004, 15:2361-2374.
    41. Herr I, Debatin KM: Cellular stress response and apoptosis in cancer therapy. Blood 2001, 98:2603-2614.
    42. Hood L: Systems biology: integrating technology, biology, and computation. Mech Ageing Dev 2003, 124:9-16.
    43. Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20:1914-1927.
    44. Lin LH, Lee HC, Li WH, Chen BS: Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics 2005, 6:258.
    45. Klipp E HR, Kowald A, Wierling C, Lehrach H: Systems Biology in Practice. Concepts, Implementation and Application. Wiley-VCH, Berlin 2005.
    46. Johansson R: System modeling and identification. Englewood Cliffs, NJ: Prentice Hall; 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE