簡易檢索 / 詳目顯示

研究生: 廖翊雅
Liao, Yi-Ya
論文名稱: 氧釩錯合物催化烯烴進行 1,2-氧化三氟甲基化及氧化裂解反應及具導向性自組裝篩選銨離子衍生物之應用
Vanadyl specie-catalyze, CF3-directed olefin oxidation and Self-Assembly for Ammonium Ion-specific Recognition
指導教授: 陳建添
Chen, Chien-Tien
口試委員: 林俊成
Lin, Chun-Cheng
鄭建鴻
Cheng, Chien-Hong
吳學亮
Wu, Hsyueh-Liang
林伯樵
Lin, Po-Chiao
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: S149
中文關鍵詞: 1,2-氧化三氟甲基化氧化裂解自組裝氧釩錯合物
外文關鍵詞: 1,2-oxidative, oxidative, cleavage
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去本實驗室以氧釩金屬錯合物針對烯烴及醛類衍生物搭配第三丁基過氧化劑進行醯基自由基氧化耦合反應,已有不錯的效果,且可針對 β-位進行過氧化和羥基化反應之選擇。
    近年來,我們開發了一種新的催化模式,用於 CF3 自由基加成至未活化之烯烴衍生物,並以 Togni's I 試劑作為 CF3 自由基之來源,生成各種 α-三氟甲基化酮類產物。我們使用七種不同配體的氧釩 (IV) 和五種氧釩 (V) 錯合物催化 Togni's I 試劑,並以氧氣為氧化劑,丙酮為溶劑於室溫下針對未活化之烯烴衍生物進行 1,2-氧化三氟甲基化反應,而其中 3,5-雙溴基取代之 N-亞柳第三丁基亮氨酸氧釩錯合物與 VO(OTf)2 搭配雙牙噁唑啉配體之結果最佳,反應時間為 15–48 小時,產率介於 51–95%。
    在本研究中,我們針對 1,2-氧化三氟甲基化反應機制更進一步探討,利用氘取代之苯乙烯進行控制實驗,進一步確認其關鍵反應步驟為 1,2-三氟甲基氧釩過氧化物中間體的 1,3- 及 1,4-氫原子轉移。在 1,2-氧化三氟甲基化反應中,我們發現其 5–7% 少量副產物為氧化裂解的醛類產物,由於傳統進行氧化裂解反應時,大多需臭氧、金屬催化要加熱以及添加強氧化劑,而在我們的室溫氧氣條件下以上述的氧釩錯合物催化即可進行氧化裂解反應,於是在本研究中我們使用 α 位具有六種取代基和三種取代之烯烴衍生物進行氧化裂解反應之研究,尤其可以應用在烷基取代的烯烴,產率可以高達 89–99% 以上,裂解後 另外一半的產物為三氟甲基的醛,因此更增添此裂解的經濟價值。
    近年來,我們實驗室已成功發展單口及雙口四聚簇狀體之研究,可將此四聚簇狀體應用在鹼金屬族及銀離子等重和過去金屬離子的篩選,歸納出單口四聚簇狀體對鹼金屬族離子的增效式篩選程度為 K+ > Cs+ >> Na+ > Li+ (95:05:0:0),藉此性質可模擬鉀離子通道的 KcsA 膜蛋白且因與過氧釩酸根中心的靜電引力,而有更高的篩選性,在其最外層開口處四個等手性亞胺基特丁甲酸醯基的鉗合環境。除此之外我們也成功的對鹼土金屬離子 (Ba2+ > Sr2+ >> Ca2+ > Mg2+, 10000:100:0:0)、重金屬離子 (Hg2+ > Pb2+ > Cd2+ >> Zn2+, 10000:100:0:0) 及非金屬銨鹽離子及水合陽離子 (MeNH3+ > NH4+ > H3O+ > Me2NH2+ >> Me3NH+, 60000:600:100:0:0) 的特殊篩選傳送以及回收。
    在本研究中我們更進一步針對肼離子、胍離子及吡啶離子進行篩選,將其氫譜及釩譜與先前銨鹽離子的研究進行探討,進而推測離子與四聚簇狀體之鍵結型態。單口肼離子單陰離子四聚簇狀體鍵結形式與 MeNH3+ 較相似,較陷入孔洞內,而膠囊狀的肼離子雙陰離子八聚簇狀體、胍離子、吡啶離子則與洞口處四個羰基進行氫鍵鍵結,與 NH4+ 鍵結模式較相似。


    Previously, we have reported 1,2-hydroxy- or 1,2-peroxy acylation of olefins by using two different vandyl species with high efficiency in warm acetonitrile.
    Recently, we develop a new catalytic protocol for the “CF3“-radical type addition to unactivated olefins with Togni's reagent to deliver various β-trifluoromethylated ketones. A series of oxovanadium species were examined as catalysts for the 1,2-oxidative trifluoromethylation of styrene with Togni's reagent using oxygen as the sole oxidant at ambient temperature in acetone. In addition, we tried 7 different vanadyl (IV) and 5 different vanadyl (V) catalyst, the complex with 3,5-dibromo substituents and VO(OTf)2 with bisoxazoline type ligands led to the best results, in 15-48 hours, in 51-95% yields. In this reasearch, we used deuterium control experiments to demonstrate the key steps is 1,2- oxidative trifluoromethyl vanadyl(V) peroxide intermediate under going 1,3- and 1,4-H atom transfer. The byproduct of 1,2-oxidative trifluoromethylation was aldehyde product, about 5-7% yield, which was from oxidative cleavage reaction. Oxidative cleavage at room temperature under oxygen is a big challeng. Therefore, in this study, we carried out the oxidative cleavage reaction using an olefin derivative having a substituent at the α position, and the yield can be 89–99%.The more important is alkyl substituted also gived high yield. By the way, the other oxidative cleavaged product trifluoromethyl aldehyde in our system is more economic.
    In the past ten years, a series of C4-symmetric tetrameric clusters and C4-symmetric quadruple helix have been developed by our lab and were applied to directed self-assembly of chiral oxidovanadium(V) methoxides for metal (I) and silver ion specific recognition. The synergistic recognition selectivity of alkali metal (I) ions was K+ > Cs+ >> Na+ > Li+ (95:05:0:0) by C4-symmetric tetrameric clusters. The binding mode in these tetrameric clusters is reminiscent of KcsA membrane protein with a synergistic binding of K+ by four homochiral glycine residues near the opening site in KcsA. In addition, we have succeeded in alkaline earth metal ions (Ba2+ > Sr2+ >> Ca2+ > Mg2+, 10000:100:0:0), heavy metal ions (Hg2+ > Pb2+ > Cd2+ >> Zn2+, 10000:100:0:0) and non-metal ammonium ions (MeNH3+ > NH4+ > Me2NH2+ >> Me3NH+, 60000:600:100:0:0) specific transport and recycling.
    In this study, we screened the hydrazine ion, guanidinium ion and pyridinium ion, and disscused the 1H and 51V NMR spectrum with the previous ammonium salt ions. The bindnig mode of hyrazine tetrameric cluster is similar to MeNH3+, and the hyrazine octameric cluster, guanidinium ion and pyridine ion are bonded to the four carbonyl groups.

    中文摘要 i Abstract iv 謝誌 vi 第壹章、緒論 1 第一節、釩 1 第二節、 氧釩錯合物在有機合成及催化反應之應用 2 1-1 氧釩錯合物催化烯類化合物之環氧化反應 2 1-2 氧釩錯合物催化二級醇類化合物進行之不對稱氧化反應 7 1-3 氧釩錯合物催化芳香酚類化合物進行之不對稱耦合反應 12 1-4 氧釩錯合物催化硫醚類化合物進行之不對稱氧化反應 17 1-5 氧釩錯合物進行之不對稱氰醇或醛醇加成反應 22 第貳章、N-亞柳胺基酸衍生掌性氧釩錯合物催化烯烴類衍生物進行氧化三氟甲基化反應 27 第一節、 前言與文獻探討 27 2-1-1. 碳碳雙鍵交聯耦合反應 27 2-1-2. 三氟甲基的加成與衍生反應 30 2-1-3. 研究動機 37 第二節、結果討論 39 2-2-1. 不同N-亞柳胺基酸氧釩錯合物對烯烴進行氧化三氟甲基化反應之結果 41 2-2-2. 不同烯烴衍生物對氧化三氟甲基化反應之結果 43 2-2-3. 反應機構之探討與研究 46 2-2-4. 結論 52 2-2-5. 未來展望 52 第三章、N-亞柳胺基酸衍生掌性氧釩錯合物催化烯烴類衍生物進行氧化裂解反應 55 第一節、前言與文獻探討 55 3-1-1. 研究動機 63 第二節、結果討論 63 3-2-1. 不同氧釩金屬催化劑對 α-甲基烯烴進行氧化裂解反應之結果 64 3-2-2. α-甲基取代不同烯烴衍生物對氧化裂解反應之結果 66 3-2-3. 結論與未來展望 73 第四章、銨離子衍生物鉗合的C4-對稱釩酸鹽為中心之四聚簇狀體研究 74 4-1-1. 自然界陽離子通道之研究 77 4-1-1-1. KcsA-K+ 離子通道 77 4-1-1-2. 自然界中鈣離子與蛋白質生成具有 C4 對稱的四聚簇狀體 79 4-1-1-3. 細菌、真菌之銨離子通道 (Ammonium Transport) 81 4-1-2. 偵測銨、甲基銨離子及胺基酸之研究 84 4-1-3. 單口 C4 對稱四聚簇狀體篩選鹼金屬離子結構85 91 4-1-4. 單口 C4 對稱四聚簇狀體篩選鋇、汞金屬離子結構99 94 4-1-5. 單口 C4 對稱四聚簇狀體篩選胺離子結構100 97 4-1-6. 研究動機 100 第二節、 結果討論 100 4-2-1. 製備單口 C4 對稱鋰離子四聚簇狀體 100 4-2-2. 單口 C4 對稱鋰離子四聚簇狀體篩選肼離子 101 4-2-3. 單口 C4 對稱鋰離子四聚簇狀體篩選胍離子 106 4-2-4. 單口 C4 對稱鋰離子四聚簇狀體篩選吡啶離子 109 4-2-5. 單口 C4 對稱銨離子衍生物四聚簇狀體之氫譜探討 111 4-2-6. 結論 116 4-2-7. 未來與展望 117 第五章、分析儀器、實驗步驟及光譜數據 118 第一節、分析儀器 118 第二節、 實驗步驟與光譜分析 121 5-2-1. N-亞柳胺基酸與 N-柳胺基酸衍生之掌性釩氧錯合物合成步驟與光譜數據 121 5-2-2. 氧釩金屬鹽製備之反應步驟66 127 5-2-3. 不同N-亞柳胺基酸氧釩錯合物對烯烴進行氧化三氟甲基化反應 128 5-2-4. 烯烴衍生物之氧化三氟甲基化反應 131 參考文獻 156

    1. (a) Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1990. (b) Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42, 1587.
    2. Kaneda, K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron Lett. 1983, 24, 5009.
    3. Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun. 1999, 1207.
    4. Bolm, C.; Bienewald, F. Angew. Chem. Int. Ed. 1995, 34, 2640.
    5. (a) Murase, N. H., Y.; Oishi, M.; Yamamoto, H. J. Org. Chem. 1999, 64, 338. (b) Li, Z.; Zhang, W.; Yamamoto, H. Angew. Chem. Int. Ed. 2008, 47, 7520.
    6. Wu, H.-L.; Uang, B.-J. Tetrahedron: Asymmetry 2002, 13, 2625.
    7. Malkov, A. V.; Czemerys, L.; Malyshev, D. A. J. Org. Chem. 2009, 74, 3350.
    8. Noji, M.; Kobayashi, T.; Uechi, Y.; Kikuchi, A.; Kondo, H.; Sugiyama, S.; Ishii, K. J. Org. Chem. 2015, 80, 3203.
    9. (a) Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L. Chem. Commun. 2014, 50, 1231. (b) Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L. Adv. Synth. Catal. 2015, 357, 3064.
    10. Pasayat, S.; Böhme, M.; Dhaka, S.; Dash, S. P.; Majumder, S.; Maurya, M. R.; Dinda, R. Eur. J. Inorg. Chem. 2016, 1604.
    11. (a) Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090. (b) Radosevich, A. T.; Chan, V. S.; Shih, H. W.; Toste, F. D. Angew. Chem. Int. Ed. 2008, 47, 3755. (c) Blanc, A.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 2096.
    12. Shiels, R. A.; Venkatasubbaiah, K.; Jones, C. W. Adv. Synth. Catal. 2008, 350, 2823.
    13. (a) Chen, C.-T.; Bettigeri, S.; Weng, S.-S.; Pawar, V. D.; Lin, Y.-H.; Liu, C.-Y.; Lee, W.-Z. J. Org. Chem. 2007, 72, 8175. (b) Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006, 128, 6308. (c) Chen, C.-T.; Kao, J. Q.; Salunke, S. B.; Lin, Y. H. Org. Lett. 2010, 13, 26. (d) Salunke, S. B.; Babu, N. S.; Chen, C.-T. Adv. Synth. Catal. 2011, 353, 1234. (e) Chen, C.-T.; Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Mount, Y. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3522.
    14. Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869.
    15. Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. 2001, 980.
    16. Barhate, N. B.; Chen, C.-T. Org. Lett. 2002, 4, 2529.
    17. Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun. L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 13927.
    18. (a) Takizawa, S.; Katayama, T.; Sasai, H. Chem. Commun. 2008, 4113. (b) Takizawa, S.; Kodera, J.; Yoshida, Y.; Sako, M.; Breukers, S.; Enders, D.; Sasai, H. Tetrahedron 2014, 70, 1786. (c) Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Tetrahedron: Asymmetry 2015, 26, 613. (d) Takizawa, S.; Arteaga, F. A.; Yoshida,Y.; Kodera, J.; Nagata, Y.; Sasai, H. Dalton Trans. 2013, 42, 11787. (e) Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2016, 138, 11481.
    19. Curci, R.; Di Furia, F.; Testi, R.; Modena, G. J. Chem. Soc., Perkin Trans. 2. 1974, 752.
    20. Nakajima, K.; Kojima, M.; Fujita, J. Chem. Lett. 1986, 1483.
    21. Bolm, C.; Bienewald, F. Angew. Chem. Int. Ed. 1995, 34, 2640.
    22. Sun, J.; Zhu, C.; Dai. Z.; Yang, M.; Pan, Y.; Hu, H. J. Org. Chem. 2004, 69, 8500.
    23. Drago, C; Caggiano, L.; Jackson, R. F. W. Angew. Chem. Int. Ed. 2005, 44, 7221.
    24. Liu, H.; Wang, M.; Wang, Y.; Wang, Y.; Sun, H.; Sun, L. Catal. Commun. 2009, 11, 294.
    25. (a) Zeng, Q.; Gao, Y.; Dong, J.; Weng, W.; Zhao Y. Tetrahedron: Asymmetry 2011, 22, 717. (b) Zeng, Q.; Weng, W.; Xue, X. Inorg. Chim. Acta. 2012, 388, 11.
    26. Chuo, T.-H.; Boobalan, R.; Chen, C. Chem. Select. 2016, 1, 2174.
    27. Zid, T. B., Fadhli, M.; Khedher, I.; Fraile, J. M. Micropor. Mesopor. Mater. 2017, 239, 167.
    28. (a) Belokon, Y. N.; North, M.; Parson, T. Org. Lett. 2000, 2, 1617. (b) Belokon, Y. N.; Maleev, V. I.; North, M.; Usanov, D. L. Chem. Commun. 2006, 4614. (c) Chechik, V.; Conte, M.; Dransfield, T.; North, M.; Omedes-Pujol, M. Chem. Commun. 2010, 46, 3372. (d) North, M.; Watson, J. M. ChemCatChem 2013, 5, 2405.
    29. Sakai, Y.; Mitote, J.; Matsumoto, K.; Katsuki, T. Chem. Commun. 2010, 46, 5787.
    30. (a) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Pathak, K.; Bajaj, H. C. Chirality 2010, 22, 153. (b) Saravanan, S.; Kahn, N. H.; Jakhar, A.; Ansari, A.; Kureshy, R. I.; Adbi, S. H.; Kumar, G. RSC Adv. 2015, 5, 99951.
    31. (a) Kolb,H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (b) Bataille, C. J. R.; Donohoe, T. J. Chem. Soc. Rev. 2011, 40, 114.
    32. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
    33. (a) Rudolph, J.; Sennhenn, P. C.; Vlaar, C. P.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 2810. (b) Sigman, K. H.; Jensen, M. S. Org. Biomol. Chem. 2008, 6, 4083.
    34. (a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (b) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846. (c) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962. (d) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076.
    35. (a) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114. (b) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869. (c) Schiesser, C. H.; Wille, U.; Matsubara, H.; Ryu, I. Acc. Chem. Res. 2007, 40, 303. (d) Beller, M.; Seayad, J.; Tillack, A.; Jiao, A. H. Angew. Chem. Int. Ed. 2004, 43, 3368. (e) Morimoto, T.; Kakiuchi, K. Angew. Chem. Int. Ed. 2004, 43, 5580. (f ) Kiss, G. Chem. Rev. 2001, 101, 3435.
    36. (a) Chudasama, V.; Fitzmaurice, R. J.; Caddick, S. Nat. Chem. 2010, 2, 592. (b) Fitzmaurice, R. J.; Ahern, J. M.; Caddick, S. Org. Biomol. Chem. 2009, 7, 235. (c) Chudasama, V.; Fitzmaurice, R. J.; Ahern, J. M.; Caddick, S. Chem. Commun. 2010, 46, 133.
    37. (a) Wolfe, J. P. Eur. J. Org. Chem. 2007, 571. (b) Liwosz, T. W.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 2020. (c) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (d) Ji, X.; Huang, H.; Wu, W.; Jiang, H. J. Am. Chem. Soc. 2013, 135, 5286. (e) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881.
    38. (a) Curran, D. P. J. Am. Chem. Soc., 1983, 105, 5826. (b) Suk, H.; Feng, X.; Yun, J. Chem. Eur. J. 2009, 15, 1939. (c) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem. Int. Ed. 2012, 51, 12763. (d) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Asian J. 2014, 9, 179.
    39. Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem. Int. Ed. 2010, 49, 10154.
    40. Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133, 10756.
    41. Wang, J.; Liu, C.; Yuan, J.; Lei, A. Angew. Chem. Int. Ed. 2013, 52, 2256.
    42. Yang, W.-C.; Weng, S.-S.; Ramasamy, A.; Rajeshwaren, G.; Liao, Y.-Y.; Chen, C.-T. Org. Biomol. Chem. 2015, 13, 2385.
    43. (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Kirk, K. J. Fluor. Chem. 2006, 127, 1013. (e) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
    44. (a) Ma, J. -A.; Cahard, D. D. Chem. Rev. 2004, 104, 6119. (b) Schlosser, M. Angew. Chem. Int. Ed. 2006, 45, 5432. (c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (d) Ma, J.-A.; Cahard, D. J. Fluor. Chem. 2007, 128, 975. (e) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (f) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron 2011, 67, 2161. (g) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1744.
    45. (a) Rhee, C. K.; Chae, K.; Levy, L. A.; Korach, K. S. Bioorg. Med. Chem. Lett. 1995, 5, 133. (b) Alvernhe, G.; Langlois, B.; Laurent, A.; Drean, I. Le; Selmi, A.; Weissenfels, M. Tetrahedron Lett. 1991, 32, 643. (c) Schenck, H. A.; Lenkowski, P. W.; Choudhury-Mukherjee, I.; Ko, S.-H.; Stables, J. P.; Patel, M. K.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 979. (d) Choudhury-Mukherjee, I.; Schenck, H. A.; Cechova, S.; Pajewski, T. N.; Kapur, J.; Ellena, J.; Cafiso, D. S.; Brown, M. L. J. Med. Chem. 2003, 46, 2494.
    46. He, Z.; Zhang, R.; Hu, M.; Li, L.; Ni, C.; Hu, J. Chem. Sci. 2013, 4, 3478.
    47. Novak, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167.
    48. Langlois, N. E. I.; Gray, E. S. J. Pathol. 1992, 4, 347.
    49. (a) Itoh, Y.; Mikami, K. Org. Lett. 2005, 7, 4883. (b) Itoh, Y.; Mikami, K. Org. Lett. 2005, 7, 649. (c) Itoh, Y.; Houk, K. N.; Mikami, K. J. Org. Chem. 2006, 71, 8918. (d) Itoh, Y.; Mikami, K. Tetrahedron 2006, 62, 7199. (e) Itoh, Y.; Mikami, K. J. Fluor. Chem. 2006, 127, 539.
    50. Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2011, 50, 6119.
    51. Zhang, C.-P.;Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632.
    52. (a) Matousek, V.; Togni, A.; Bizet, V.; Cahard, D. Org. Lett. 2011, 21, 5762. (b) Katayev, D.; Matoušek, V.; Koller, R.; and Togni, A. Org. Lett. 2015, 17, 5898.
    53. Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem. Int. Ed. 2013, 52, 9747.
    54. Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. J. Fluor. Chem. 2014, 161, 128.
    55. Wu, Y.-b.; Lu, G.-p.; Yuan, T.; Xu, Z.-b.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668.
    56. Yang, X.; He, L.; Tsui, G. C. Org. Lett. 2017, 19, 2446.
    57. (a) Liang, Z.; Wang, F.; Chen, P.; Liu, G. J. Fluor. Chem. 2014, 167, 55. (b) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
    58. Hussain, M. I.; Feng, Y.; Hu, L.; Deng, Q.; Zhang, X.; Xiong, Y. J. Org. Chem., Article ASAP DOI: 10.1021/acs.joc.8b00729
    59. Zhao, L.; Li, P.; Zhang, H.; Wang, L. Org. Chem. Front. 2019, 6, 87.
    60. Shen, W.-G.; Wu, Q.-Y.; Gong, X.-Y.; Ao, G.-Z.; Liu, F. Green. Chem. 2019, 21, 2983.
    61. Böhm, H. J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Chem. Bio. Chem. 2004, 5, 637.
    62. Ma, J. A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
    63. Heidelberger, C.; Chaudhuri, N. K.; Danneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R.; Schnitzer, R. J.; Pleven, E.; Scheiner, J. Nature 1957, 179, 663.
    64. Plosker, G. L.; Perry, C. M.; Goa, K. L. Pharmacoeconomics 2001, 19, 421.
    65. Wong, D. T.; Bymaster, F. P.; Engleman, E. A. Life Sci. 1995, 57, 411.
    66. Schenck, H. A.; Lenkowski, P. W.; Choudhury-Mukherjee, I.; Ko, S.-H.; Stables, J. P.; Patel, M. K.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 979.
    67. Rhee, C. K.; Chae, K.; Levy, L. A.; Korach, K. S. Bioorg. Med. Chem. Lett 1995, 5, 133.
    68. 陳雅佩 (2018),氧釩金屬錯合物催化烯烴進行 1,2-氧化三氟甲基化反應之研究,國立清華大學化學系碩士論文。
    69. (a)Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. ACS Catal. 2017, 7, 3050. (b) Paul, C. E.; Rajagopalan, A.; Lavandera, I.; Gotor-Fernández, V.; Kroutil, W.; Gotor, V. Chem. Commun. 2012, 48 (27), 3303-3305.
    70. Xiong, B.; Zeng, X.; Geng, S.; Chen, S.; He, Y. .; Feng, Z. Green Chem. 2018, 20, 4521.
    71. Gonzalez-de-Castro, A.; Xiao, J. J. Am. Chem. Soc. 2015, 137, 8206.
    72. Liu, Y.; Xue, D.; Li, C.; Xiao, J.; Wang, C. Catal. Sci. Technol. 2017, 7, 5510.
    73. Lin, R.; Chen, F.; Jiao, N. Org. Lett. 2012, 14, 4158.
    74. Miao, C.-X.; Yu, B.; He, L.-N. Green Chem. 2011, 13, 541.
    75. Jiang, M.; Shen, T.; Xu, H.-B.; Liu, C.-L. Progress in Chemistry 2002, 14, 263.
    76. (a) Morth, J. P.; Pedersen, B. P.; Toustrup-Jensen, M. S.; Sørensen, T. L.-M.; Petersen, J.; Andersen, J. P.; Vilsen, B.; Nissen, P. Nature 2007, 450, 1043. (b) Ogawa, H.; Shinoda, T.; Cornelius, F.; Toyoshima, C. Proc. Natl. Acad. Sci. Am. Chem. Soc. 2009, 106, 13742.
    77. (a) Garczarek, F.; Gerwert, K. Nature 2006, 439, 109. (b) Lanyi, J. K. J. Struc. Biol. 1998, 124, 164. (c) Mathias, G.; Marx, D. Proc. Natl. Acad. Sci. Am. Chem. Soc. 2007, 104, 6980.
    78. (a) Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon R. Science 1998, 280, 69. (b) Gouaux1, E.; MacKinnon R. Science 2005, 310, 1461. (c) Valiyaveetil, F. I.; Leonetti, M.; Muir, T. W.; MacKinnon, R. Science 2006, 314, 1004. (d) 趙文龍; 隋森芳, 科學通報, 2004, 49, 403
    79. (a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Saibil, H. R. Nature Struc. Biol. 2000, 7, 3.
    80. (a) Izatt, R. M.; Nelson, D. P.; Rytting, J. H.; Haymore, B. L.; Christensen, J. J. J. Am. Chem. Soc. 1971, 93, 1619. (b) Bourgion, M.; Wong, K. H.; Hui, J. Y.; Smid, J. J. Am. Chem. Soc. 1975, 97, 3462. (c) Vetrichelvan, M.; Lai, Y. H.; Mok, K. F. Dalton Trans. 2003, 295.
    81. (a) Izatt, R. M.; Nelson, D. P.; Haymore, B. L.; Christensen, J. J. J. Am. Chem. Soc. 1972, 1308. (b) Behr, J.-P.; Dumas, P.; Moras, D. J. Am. Chem. Soc. 1982, 104, 4540. (c) Chênevert, R.; Rodrigue, A.; Beauchesne, P.; Savoie, R. Can. J. Chem. 1984, 62, 2293.
    82. (a) Shi, X.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2001, 123, 6738. (b) Wu, G.; Wong, A.; Gan, Z.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 7182. (c) Gill, M. L.; Strobel, S. A.; Loria, J. P. J. Am. Chem. Soc. 2005, 127, 16723. (d) Kotch, F. W.; Sidorov, V.; Lam, Y. F.; Kayser, K. J.; Li, H.; Kaucher, M. S.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 15140.
    83. Kim, J.; Kim, S.-G.; Seong, H. R.; Ahn, K. H. J. Org. Chem. 2005, 70, 7227.
    84. Lin, Y.-H.; Kuo, T.-S.; Chen, C.-T. J. Am. Chem. Soc. 2008, 130, 12842.
    85. (a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 2000, 39, 1052. (b) Cheng, T.-Y.; Xu,Y.-F.; Zhang, S.-Y.; Zhu, W.-P.; Qian, X.-H.; Duan L. J. Am. Chem. Soc. 2008, 130, 16160. (c) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270. (d) Chen, C.-T.; Hua, W.-P. J. Am. Chem. Soc. 2002, 124, 6246. (e) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831.
    86. (a)Garaeva, A. A.; Oostergetel, G. T.; Gati, C.; Guskov, A.; Paulino, C.; Slotboom, D. J. Nat. Struct. Mol. Biol., 2018, 25, 515. (b) Ekaitz Errasti-Murugarren, E.; Fort, J.; Bartoccioni, P.; Díaz, L.; Pardon, E. Nat. Comm., 2019, 10, 1807.
    87. Bühlman, P.; Pretch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593.
    88. (a) Sasaki, S.; Amano, T.; Monma, G.; Otsuka, T.; Iwasawa, N.; Citterio, D.; Hisamoto, H.; Suzuki, K. Anal. Chem. 2002, 74, 4845. (b) Suzuki, K.; Siswanta, D.; Otsuka, T.; Amona, T.; Ikeda, T.; Hisamoto, H.; Yoshihara, R.; Ohba, S. Anal. Chem. 2000, 72, 2200. (c) Jackson, D. T.; Nelson, P. N. J. Mol. Struct. 2019, 1182, 241.
    89. Jon, S. Y.; Kim, J.; Kim ,M.; Park, S. H.; Jeon, W. S.; Heo, J.; Kim, K. Angew. Chem., Int. Ed. 2001, 40, 2116.
    90. (a) Kim, H.- S.; Do, K. S.; Kim, K. S.; Shim, J. H.; Cha, G. S.; Nam, H. Bull. Korean. Chem. Soc. 2004, 25, 1465. (b) Kariuki, B. M.; Lee, S.-O.; Harris, K. D. M.; Kim, H.-S.; Do, K.-S.; Kim, K.-I. Cryst. Growth & Design 2002, 2, 309.
    91. Katsu, T.; Matsumoto, M. Anal. Sci. 2001, 17, 721.
    92. Yapar, S.; Oikonomou, M.; Velders, A. H.; Kubik, S. Chem. Commun., 2015, 51, 14247.
    93. Pisagatti, I.; Barbera, L.; Gattuso, G.; Villari, V.; Micali, N.; Fazio, E.; Neri, F.; Parisi, M. F.; Notti, A. New J. Chem., 2019, 43, 7628.
    94. Ni, X.-L.; Rahman, S.; Wang, S.; Jin, C.-C.; Zeng, X.; Hughes, D. L.; Redshaw, C.; Yamato, T. Org. Biomol. Chem., 2012, 10, 4618
    95. Gattuso, G.; Notti, A.; Parisi, M. F.; Posagatti, I.; Marcos, P. M.; Ascenso, J. R.; Brancatelli, G.; Geremia, S. New J. Chem., 2015, 39, 817
    96. Mostovaya, O.A.; Padnya, P.L.; Vavilova, A.A.; Shurpik, D.N.; Khairutdinov, B.I.; Mukhametzyanov, T.A.; Khannanov, A.A.; Kutyreva, M.P.; Stoikov, I.I. New J. Chem. 2018, 42, 177.
    97. Lämsä, M.; Huuskonen, J.; Rissanen, K.; Pursiainen, J. Chem. Eur. J., 1998, 4, 84.
    98. Janaa, S.; and Suryavanshi, K. K. Russ. J. Org. Chem., 2019, 55, 707.
    99. Chen, C.-T.; Liao, Y.-Y.; Salunke, S. B.; Lin, Y.-H.; Kuo, T.-S. Inorg. Chem. 2018, 57, 11511.
    100. 林雅慧 (2012),誘導識字組裝生成 C4-對稱釩酸鹽為中心之四聚簇狀體,做為增校式金屬離子之篩選傳送及不對稱催化,國立台灣師範大學化學系博士論文。

    QR CODE