簡易檢索 / 詳目顯示

研究生: 張惟淞
Chang, Wei-Sung
論文名稱: 應用於高速鎖相迴路之微波除頻器與振盪器
Microwave Frequency Divider and Oscillator for High-Speed Phase-Locked Loop Applications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 52
中文關鍵詞: 除頻器振盪器微波鎖相迴路
外文關鍵詞: Frequency Divider, Oscillator, Microwave, Phase-Locked Loop
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The continuous scaling in CMOS technology is beneficial to design circuits for millimeter-wave wireless communication circuits which extend the data rate by high carrier frequency. This study focuses on designing CMOS high speed phase-locked loop (PLL) and proposing some design technique to overcome general challenges: limiting locking range of frequency dividers and poor performance of VCO.
    First, we propose two design techniques to realize high speed and wide locking range frequency divider: Method 1, a Miller divider using gm-boost technique for 24-GHz automotive radar system in TSMC 0.18 µm CMOS was proposed. The proposed technique effectively increases the locking range, resulting in a 1.4□ improvement. As the input signal level increases to 0 dBm, the power consumption becomes 2.76 mW, and the locking range is enhanced to 5.2 GHz from 19.3 GHz to 24.5 GHz. Method 2, using the proposed transformer-injection technique for 60-GHz short distance applications in TSMC 0.13 µm CMOS, the divider demonstrates a wide locking range up to 15.7 GHz from 56.5 GHz to 72.2 GHz. Under the condition of VDD = 0.9 V, the divider can even function with a locking range up to 11.5 GHz and a power dissipation of only 0.81 mW. The proposed technique effectively increases the locking range, resulting in a 3.2□ improvement.
    In addition, the VCO and the prescaler are connected directly using the current-reused technique in the proposed design. We combine the two different functional blocks leading to a new configuration with one current path only. Under a VDD of 1.9 V, the structure can function with a power dissipation of only 4.91 mW in TSMC 0.18 µm CMOS. The phase noise is obtained as -113.1 dBc/Hz at 1 MHz offset, which is correspondent to a VCO FOM of -185.8 dBc/Hz.
    Finally, in the proposed 10-GHz PLL, the components under the highest speed using the current-reused technique can reduce the power consumption significantly. In the simulation results, the overall power consumption is only 8.36 mW.


    由於半導體製程的快速進步,伴隨著資料大量傳遞的需求,使得通訊系統不斷的往高頻邁進。本論文主要目標為利用CMOS製程實現高速系統中的鎖相迴路,提出不同的電路技巧來克服面臨的挑戰:除頻器的除頻範圍不足以及振盪器操作特性不佳等問題。
    首先,為實現高速並且寬鎖定範圍之除頻器,本研究提出兩種方法改善可除頻範圍過窄問題:方法一提出運用轉導提升技術之米勒除頻器應用於24-GHz雷達系統,以TSMC 0.18-µm CMOS製程實現,量測結果顯示,操作於2.76-mW之功耗時,此技術可較傳統米勒除頻器提升1.4倍可除頻率,範圍為19.3-GHz至24.5-GHz。方法二提出變壓器注入技術之米勒除頻器應用於60-GHz短距離傳輸,以TSMC 0.13- µm CMOS製程實現,量測結果顯示,非自振情況下,能操作於0.81-mW之低功耗,並且擁有11.5-GHz的鎖定範圍;而改變偏壓令功率加大至3.78-mW時,在0 dBm之輸入功率下,可除頻頻率加大為56.5-GHz至72.2-GHz,擁有15.7-GHz的鎖定範圍,此技術可較傳統米勒除頻器提升3.2倍可除頻率。
    接著,針對高速操作之振盪器與第一級除頻器,運用電流重複運用技術,只使用一路電流結合共振腔振盪器與電流模式邏輯閘除頻器成一個新單元。此設計使用TSMC 0.18-µm CMOS當供應電壓為1.9V時,總功率消耗為3.9-mW。離主頻1 MHz之相位雜訊為-113.8 dBc/Hz,相對應之FOM為-185.8 dBc/Hz。
    最後,將鎖相迴路中最高速之區塊使用上述電流重複運用技術實現10-GHz達到低功率設計。模擬結果顯示,整個鎖相迴路只消耗8.36 mW的功耗。

    Abstract i 摘要 iii Contents iv List of Figures vi List of Tables ix ChapterI Introduction - 1 - 1.1 Motivation - 1 - 1.2 Thesis Organization - 2 - ChapterII Theory of PLL - 3 - 2.1 Basic Principle of PLL - 3 - 2.2 Phase Frequency Detectors - 3 - 2.3 Charge Pump - 5 - 2.4 Loop Filter - 7 - 2.5 Voltage Controlled Oscillator - 7 - 2.5.1 Introduction - 7 - 2.5.2 The Operation Principles - 8 - 2.5.3 Phase Noise - 9 - 2.6 Frequency Divider - 11 - ChapterIII Wide-Locking-Range Miller Frequency Dividers - 12 - 3.1 Miller Frequency Divider - 12 - 3.2 Miller Frequency Divider Using Gm-Boosted Technique - 13 - 3.2.1 The Principle of Gm-Boosted Technique - 13 - 3.2.2 Simulation Results - 15 - 3.2.3 Measurement Results - 16 - 3.2.4 Conclusion - 19 - 3.3 Transformer-Injection Miller Frequency Divider - 20 - 3.3.1 The Principle of Transformer-Injection Technique - 20 - 3.3.2 Simulation Results - 23 - 3.3.3 Measurement Results - 23 - 3.3.4 Conclusion - 28 - ChapterIV Prescaler and VCO Design for PLL Applications - 29 - 4.1 The Design Methodology of VCO - 29 - 4.2 The Design Methodology of Digital Divider - 30 - 4.3 VCO and Prescaler Using Current Reused Technique - 31 - 4.3.1 Introduction - 31 - 4.3.2 Architecture - 32 - 4.3.3 Simulation Results - 34 - 4.3.4 Measurement Results - 36 - 4.3.5 Conclusions - 40 - 4.4 PLL Architectures and Simulation - 40 - 4.4.1 PLL Architectures - 40 - 4.4.2 Simulation Results - 44 - 4.4.3 Conclusion - 46 - ChapterV Conclusion - 47 - 5.1 Conclusion - 47 - 5.2 Future Works - 48 - References - 49 -

    [1] W. Rhee, “Design of high-performance charge pumps in phase-locked loops,” IEEE Press, 1999.
    [2] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Edition, Cambridge, 2004.
    [3] A. Hajimiri and T. Lee, The Design of Low Noise Oscillators, Kluwer Academic Publishers, 1999.
    [4] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [5] A. Hajimiri and T. Lee, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [6] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Mar. 1996.
    [7] E. Hegazi and A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM-FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033-1039, Jun. 2003.
    [8] D. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” in Proc. of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [9] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18µm CMOS,” ISSCC Dig. Tech. Papers, pp. 544-545, Feb. 2007.
    [10] B.-Y. Lin, K.-H. Tsai and S.-I. Liu, “A 128.24-to-137.00GHz injection-locked frequency divider in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 282-283, Feb. 2009.
    [11] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1649-1658, Aug. 2007.
    [12] Y.-H. Wong, W.-H. Lin, J.-H. Tsai and T.-W. Huang, “A 50-to-62 GHz wide-locking-range CMOS injection locked frequency divider with transformer feedback,” IEEE RFIC Symp. Dig., pp. 435-438, June 2008.
    [13] J. Lee, B. Razavi, “A 40GHz frequency divider in 0.18□m CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [14] H. Wu and A. Hajimiri, “A 19GHz 0.5mW 0.35□m CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [15] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [16] H. Zheng, and H. C. Luong “Ultra-low-voltage 20-GHz frequency dividers Using Transformer Feedback in 0.18-um CMOS Process,” IEEE J. Solid-State Circuits, vol. 43, no. 10. pp. 2293-2302, October. 2005.
    [17] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A 30-GHz wide-band low-power CMOS injection-locked frequency divider for 60-GHz wireless-LAN,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 145–147, Feb. 2008.
    [18] S. Rong, A. W. L. Ng and H. C. Luong, “0.9 mW 7GHz and 1.6mW 60GHz frequency dividers with locking-range enhancement in 0.13µm CMOS,” ISSCC Dig. Tech. Papers, pp. 96-97, Feb. 2009.
    [19] G. von Buren, C. Kromer, F. Ellinger, A. Huber, M. Schmatz, H. Jackel, “A combined dynamic and static frequency divider for a 40GHz PLL in 80nm CMOS,” ISSCC Dig. Tech. Papers, pp. 2462-2471, Feb. 2006.
    [20] A. W. Ng, G. C.T. Leung, K.-C. Kwok, L. L.K. Leung and H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18µm CMOS,” ISSCC Dig. Tech. Papers, pp. 158–159, Feb. 2005.
    [21] K.-G. Park, C.-Y. Jeong, J.-W. Park, J.-W. Lee, J.-G. Jo, and C. Yoo, “Current reusing VCO and divide-by-two frequency divider for quadrature LO generation,” IEEE Microw. Wireless Compon. Lett. vol. 18, no.6, pp. 413–415, Jun. 2008.
    [22] D. Park, S. Cho,“A 1.8V 900 μW 4.5 GHz VCO and prescaler in 0.18 μm CMOS using charge-recycling technique,” IEEE Microw. Wireless Compon. Lett. vol. 19, no.2, pp. 104–106, February. 2009.
    [23] S. Pellerano, S. Levantino, and A. L. Lacaita, “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider,” IEEE J. Solid-State Circuits, Vol. 39, No. 2, pp. 1445-1452, Feb. 2004.
    [24] W.-H. Chiu et al., “A 5.5-GHz 16-mW fast-locking frequency synthesizer in 0.18-Pm CMOS,” IEEE A-SSCC, pp. 456-459, Nov. 2007.
    [25] P.-Y. Deng and J. -F. Kiang, “A 5-GHz CMOS frequency synthesizer with an injection-locked frequency divider and differential switched capacitors,” IEEE Trans. Circuits Syst. I, vol. 56, no. 2, pp. 320-326, Feb. 2009.
    [26] S.-Y. Yang, W.-Z. Chen and T.-Y Lu, “A 7.1 mW, 10 GHz all digital frequency synthesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE