簡易檢索 / 詳目顯示

研究生: 周欣儀
Hsing-Yi CHOU
論文名稱: 單晶氧化鈧磊晶成長在矽基板(111)方向其結構性質探討
High-quality thin single-crystalline Sc2O3 films grown on Si(111)
指導教授: 洪銘輝
M. Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 65
中文關鍵詞: 分子束磊晶X光繞射氧化鈧穿透式顯微鏡
外文關鍵詞: molecular beam epitaxy (MBE), x-ray diffraction (XRD), Sc2O3, transmission electron microscopy (TEM)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,利用分子束磊晶與電子束蒸鍍的方式在超高真空下成長不同厚度的單晶Sc2O3薄膜於(111)矽基板上。並以高能電子繞射系統(RHEED)、高解析度X光繞射(XRD)、X光反射率(XRR)和高解析度穿透式電子顯微鏡(HRTEM)等系統來分析樣品成長過程變化、表面平坦度、晶格特性、薄膜結構、晶界情形。
    經由量測結果,此磊晶氧化鈧薄膜具有立方晶相結構與矽基板界面為cubic-on-cubic的方向關係,並具有極佳結晶性及平整無任何二氧化矽或其他矽氧化物的介面。結晶方向則為氧化鈧[111]平行矽基板[111]成長,平行膜面方向則由phi scan發現相對旋轉了60度,並經由電子繞射證實。 在高解析度穿透式電鏡下觀察到界面有週期性的差排存在,為探討Sc2O3/Si(111)界面差排的平均距離,以及界面關係結構。我們嘗試將解釋晶界的理論:Bollmann O-lattice理論,用來解釋界面結構及預測界面差排的平均距離。差排的應變場相當局部化,且是由一組交錯的差排網路貢獻而來。在氧化鈧與矽基板兩個 {111}面的會合處有 dislocation 出現,其 Burgers vector 為1/
    2<112>;此外,我們也發現到由氧化鈧與矽基板相疊而形成的Moire fringe。


    Sc2O3 films had been found to be epitaxially grown on Si (111) substrate with different thickness. With electron beam evaporated from a high-purity Sc2O3 source in UHV (a molecular beam epitaxy (MBE) approach), we got good crystallinity Sc2O3 film on silicon substrate. The in-situ reflection high energy electron diffraction (RHEED) was used to monitor the surface of the sample during the growth process. Structural and morphological studies were examined bysingle x-ray diffraction(XRD), and high-resolution transmission electron microscopy(HRTEM). The film thickness has been studied using low-angle x-ray diffraction (XRR) and cross-sectional TEM.
    The Sc2O3 films grown in our MBE system have a cubic phase with a very uniform thickness and a highly structural perfection, even for films as thin as 1.5 nm. Moreover ,without capping amorphous silicon to protect the Sc2O3 film, there has no interfacial layer exist in the interface. The film normal was found to be <111>, which is well aligned with the Si substrate normal. From the phi scan the in plane relation was rotated by 60 degree, and was proved by electron diffraction. To describe the periodical dislocation in the interface, we quoted Bollmann O-lattice theory, and estimated of the spacing between dislocations. We are surprised with large lattice mismatch (up to 9.3%) Sc2O3 still can form one domain crystalline film.

    CHAPTER 1 Introduction ..........1 1-1 Why Not Silicon, But Wide-Bandgap Semiconductors? ..........2 1-2. Gallium Nitride ..........5 1-3 Commercial Availability of Wafers ..........8 1-4 Alternative GaN Substrate ..........8 1-5 Different approaches to Grow Buffer Layer ..........10 1-6 Structure Analysis ..........12 CHAPTER 2 Instruments and Theory ..........14 2-1 Molecular Beam Epitaxy System (MBE) ..........14 2-2 Reflection High Energy Electron Diffraction (RHEED) ..........17 2-3 X-ray Diffraction (XRD) ..........19 2-4 High Resolution Transmission Electron Microscopy (HRTEM) ..........24 2-5 Moiré Pattern ..........26 2-6 O-Lattice Theory ..........28 2-7 Electron Diffraction ..........32 2-8 Critical Thickness and Misfit Dislocation ..........35 2-9 Summery All The Equipment Used in This Thesis ..........37 CHAPTER 3 Experimental Procedure ..........39 3-1 MBE Deposition ..........39 3-2 TEM Specimen Preparation ..........40 CHAPTER 4 Results and Discussion ..........44 4-1 In-Situ RHEED Analysis ..........44 4-2 Low Angle X-Ray Reflectivity ..........47 4-3 X-Ray Diffraction ..........49 4-4 High Resolution Transmission Electron Microscopy ..........54 4-5 Plane-View Electron Diffraction ..........58 4-6 Cross-Section Electron Diffraction ..........60 4-7 Critical Thickness ..........62 CHAPTER 5 Conclusion and Future Work ..........65 Reference for chapter 1 ..........66 Reference for chapter 2 ..........67

    chapter 1
    1 electronics, Volume 38, number 8, April 19, 1965
    2 Comparison of wide-bandgap semiconductors for power electronics applications. B.Ozpineci, L. M.
    Tolbert, Oak Ridge National Laboratory
    3 B. Ozpineci, L. M. Tolbert, S. K. Islam, and Md. Hasanuzzaman, “Effects of Silicon Carbide (SiC)
    power Devices on PWM Inverter losses,”
    4 M. Trivedi, K. Shenai, The 33rd Annual Meeting of IEEE Industry Applications Society, 1998, pp.
    959-962
    5 F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R.
    Abernathy, Appl. Phys. Lett. 73, 3893 1998.
    6 R. Mehandru, B. P. Gila, J. Kim, J. W. Johnson, K. P. Lee, B. Luo, A. H. Onstine, C. R. Abernathy, S.
    J. Pearton, and F. Ren, Electrochem. Solid-State Lett. 5, G51 2002.
    7 B. P. Gila, J. W. Johnson, R. Mehandru, B. Luo, A. H. Onstine, K. K. Allums, V. Krishnamoorthy, S.
    Bates, C. R. Abernathy, F. Ren, and S. J. Pearton, Phys. Status Solidi A 188, 239 2001.
    8 Chang Liu,a Eng Fong Chor, and Leng Seow Tan,Yufeng Dong Appl. Phys. Lett. 88, 222113 ,2006
    9 A.R. Kortan, M. Hong, J. Kwo, P. Chang, C. P. Chen, J. P. Mannaerts, and S. H. Liou to be submitted
    to PRB, 2002.
    10 Manasevit et al 1971 J. Electrochem. Soc. 118 (1864)
    11 Guha and Bojarczuk 1998 APL 72-415,73-1487
    12 Hashimoto et al 1997; Marchand et al 1999
    13 H.M. Liaw, R. Venugopal, J.Wan, m.R. Melloch, Solid-State Electronics 45 (2001) 1173-1177
    14 Marchand H et al 1999 MRS Internet J. Nitride Semicond. Res.4 2
    15 K.Y. Zang, S.J. Chua,L.S. Wang, C.V. Thompson, phys. stat. sol. (c) 0. No. 7. 2067-2071 (2003)
    16 Young-Chul Jung, Hiroyuki Miura, Makoto Ishida, Journal of Crystal Growth 201/202 (1999)
    648}651
    17 Hiroyuki Wado, Tadami Shimizu, and Makoto Ishida, APL 67,2200
    18 C.P. Chen, M. Hong, J. Kwo, H.M. Cheng, Y.L. Huang, S.Y. Lin, J. Chi, H.Y. Lee, Y.F. Hsieh, J.P.
    Mannaerts Journal of Crystal Growth 278 (2005) 638–642
    19 M. Hong,a A. R. Kortan, P. Chang, Y. L. Huang, C. P. Chen, and H. Y. Chou Appl. Phys. Lett. 87,
    2005
    20 Yuichi Ikuhara , Pirouz Pirouz, Microscopy Research and Tech. Vol. 40, Issue 3 , P.206 - 241
    chapter 2
    1 http://www.hostultra.com/~mhegazy/rheed.htm
    2 K. Ploog. Microscopical structuring of solids by molecular beam epitaxy. Angewandte Chemie - Int.
    English ed, 27(5):593-621, 1988.
    3 http://www.stoner.leeds.ac.uk/techniques/rheed.htm
    4 http://mrlxp2.mrl.uiuc.edu/~rheed/index.html
    5 Gehalten von Jens Dopke , Ch. Kittel: Einführung in die Festkörperphysik
    6 Elements of Modern X-ray Physics, by Jens Als-Nielsen and Des McMorrow, John Wiley & Sons,
    Ltd., 2001 (Modern x-ray physics & new developments)
    7 X-ray Diffraction, by B.E. Warren, General Publishing Company, 1969, 1990 (Classic x-ray physics
    book)
    8 Elements of X-ray Diffraction,2nd Ed., by B.D. Cullity, Addison-Wesley, 1978 (Covers most techniques
    used in traditional material characterization)
    9 High Resolution X-ray Diffractometry and Topography, by D. Keith Bowen and Brian K. Tanner, Taylor
    & Francis, Ltd., 1998 (Semiconductors and thin film analysis)
    10 www.mrl.ucsb.edu/.../ xray/xray-basics/
    11 Instruction Manual: Electron Diffraction Tube - Welch Scientific Co. Cat. No. 2639 - (available at the
    Resource Centre).
    12 S. J. Klepeis, et al., in Specimen Preparation for Transmission Electron Microscopy of Materials,
    ed. Bravman, et al., Mater. Res. Soc. Proc. 115, Pittsburgh, PA USA p. 179 (1987).
    13 Anderson, R. in Specimen Preparation for Transmission Electron Microscopy of Materials-III,ed.
    Anderson, et al., Mater. Res. Soc. Proc. 254, Pittsburgh, PA USA p. 141 (1992).
    14 Electronic Thin Film Science for electrical engineers and materials scientists, King-Ning Tu, James
    W. Mayer, Leonard C. Feldman.
    15 Handbook of thin film materials vol.3 Ferro-electric and dielectric thin films, Hari Singh Nalwa
    16 Micro-structural characterization of materials, David Brandon, Wayne D. Kaplan
    17 Handbook of thin film process technology / editors, David A. Glocker, S. Ismat Shah
    18 W. Bollmann, Crystal Defects and Crystalline Interfaces Springer, Berlin,(1970).
    19 W. Bollmann, Crystal Lattices, Interfaces, Matrices Bollmann, Geneva,(1982).
    20 Instruction Manual: Electron Diffraction Tube - Welch Scientific Co. Cat. No. 2639 - (available at the
    Resource Centre).
    21 http://www.matter.org.uk/default.htm
    22 J. W. Matthews, in Epitaxial Growth, edited by J. W. Matthews ~Academic,New York, 1975, 559.
    23 J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
    24 Yuichi ikuhara and pirouz, Microscopy Research and Technique 40:206-241 (1998)
    25 H. R. Liu, Y. G. Wang, Q. B. Yan and Z.Zhang, J. Material Sci Lett 22, 2003, 1173-1177
    26 From “Introduction to Surface Chemistry and Catalysis By Gabor A. Somorjai, A Wiley-Interscience
    Publication, John Wiley & Sons, Inc.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE