研究生: |
邱明志 Chiu Ming Chih |
---|---|
論文名稱: |
磁性材料應用於電力電子元件之建模研究 Study of Modeling for Power Electronic Components Applied with Magnetic Materials |
指導教授: |
王培仁
Wang Pei Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | JA模式 、高頻磁性材料 、電腦輔助分析 |
外文關鍵詞: | JA Model, Magnetic Materials, Computer-Aided Analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來電路設計高頻化是電力電子技術發展的主流,隨著電路分析之商用套裝軟體發展漸趨成熟,善用此類軟體提高生產力亦為極重要之研究課題,然而習知之模擬軟體於磁性材料建模上,並未考慮於高頻操作下的能量損失,又因坊間磁性材料種類繁多,於模擬軟體資料庫無法提供各類磁性材料模型時,電路設計者須自行建立所需模型參數,故本論文探討之目標為磁性材料模型之參數推導與建置。
磁性材料在高頻操作下之能量損失可分為磁滯及渦流兩類損失,本論文中以JA模式推導磁滯曲線方程式,並使用習用之OrCAD PSpice電子電路模擬軟體為建模分析工具,採用ABM模型方式來建立JA模式與參數,並在JA模式中參酌渦流損失對磁滯曲線之影響,再以各類應用電路來驗證磁性元件於電力電子電路之操作原理及準確性;最後針對繞組之銅損分析,本論文以一階梯電路數學模式推導,並使用多階線性階梯式數學模式來逼近繞組之近接效應與集膚效應。
Circuit design operated at higher frequency has been the mainstream in recent technology development of power electronics. As commercial simulation tools being fully developed for circuit design and analysis, it has been the main topic of research for utilizing the software to enhance design productivities. Nevertheless, due to the unavailability of commercial magnetic materials models operated at high frequency with losses consideration and various materials availability in the market, it is the main objective of this thesis to provide circuit designers with the capabilities on establishing the magnetic materials models for advanced circuit analysis.
The main losses of magnetic materials operated at high frequency consist of hystersis losses and eddy current losses. In this study, Jiles and Atherton Model (JA model) have been adopted for modeling hystersis characteristic equations employed in OrCAD PSpice simulation packages. Based upon the Analog Behavior Model (ABM) technique adopted in the package, the effects of the eddy current losses on hystersis phenomenon has been incorporated into considerations. Furthermore, application circuits have been simulated for verifications of the theoretical operation principle and effectiveness of circuits that contain magnetic components. Finally, ladder-network models employed for treating copper windings losses have been established for further consideration of proximity and skin effects in the windings.
[1]”Soft Ferrites and Accessories” Philips Applications Note, Feb. 2002.
[2]D. Mayergozy, “Dynamic Preisach Models of Hysteresis,” IEEE Trans. on Magnetics, vol. 24, No.6, pp.2925-2927, November 1988.
[3]S. H. Charap, ”Magnetic Hysteresis Model,” IEEE Trans. on Magnetics, vol. 10, No.4, pp.1091-1096, Dec. 1974.
[4]D. Jiles and D. Atherton, “Theory of Ferromagnetic Hysteresis,” Journal of Magnetism and Magnetic Materials, pp. 48-60, 1986.
[5]D. Jiles and D. Atherton, “Ferromagnetic Hysteresis,” IEEE Trans. on Magnetics, vol.MAG-19, pp.2183-2185, Sept., 1983.
[6]M. Takach and P. Lauritzen, “Survey of Magnetic Core Models,” Proceeding of the IEEE APEC’95 Conference, pp.560-566, 1995.
[7]W. E. Archer, M. F. Deveney, and R. L. Nagel, ”Non-linear Transformer Modeling and Simulation,” Proceeding of the 37th Midwest Symposium on, pp.665-669, 1994.
[8]S. Prigozy, ”PSPICE Computer Modeling of Hysteresis Effects,” IEEE Trans. on Education, Vo.l36, No.1, pp1-5, Feb., 1993.
[9]K. D. T. Ngo, “Subcircuit Modeling of Magnetic Cores with Hysteresis in PSpice,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, pp. 1425-1434, Oct., 2002.
[10]I. D. Mayergoyz, Mathematical Models of Hysteresis, Springer–Verlag, Inc., New York, N. Y., 1991.
[11]D. C. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall, Inc., New York, N. Y.,1991.
[12]D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical Determination of Hysteresis Parameters for the Modeling of Magnetic Properties Using the Theory of Ferromagnetic Hysteresis,” IEEE Trans. on Magnetics, Vol. 28, No.1, pp. 27-35, Jan., 1992.
[13]P .Petrovic, N. Mitrovic, and M. Stevanovic, ”A Hysteresis Model for Magnetic Materials using the Jiles-Atherton Model,” AUTOTESTCON '99. IEEE Systems Readiness Technology Conference, IEEE , Pages:803 – 808, Aug., 1999.
[14]W. Roshen, “Ferrite Core Loss for Power Magnetic Components Design,” IEEE Trans. on Magnetics, Vol. 27 , No. 6, pp. 4407 – 4415, 1991.
[15]J. Zhu, S. Hui, and V. Ramsden, “A Dynamic Equivalent Circuit Model for Solid Magnetic Cares for High Switching Frequency Operations,” IEEE Trans. on Power Electronics, Vol. 10, No. 6, pp. 791-795, 1995.
[16]陳淳杰,”從實例中學習OrCAD PSpice,” 儒林圖書有限公司, pp. 1- pp. 7, 1999.
[17]PSpice User’s Manual, MicroSim Corp., Irvine, CA, Apr., 1996.
[18]K. M. Coperich and A. E. Ruehli, “Enhanced Skin Effect for Partial-Element Equivalent (PEEC) Model,” IEEE Trans. on Microwave Theory and Techniques, Vol. 48, pp. 1435-1442, 2000.
[19]S. Mei and Y. I. Ismail, ”Modeling Skin Effect With Reduced Decoupled R-L Circuits and Systems,” Proceedings of the 2003 International Symposium on ISCAS'03, Vol. 4, pp. 25-28, May, 2003.
[20]M. J. Tsuk and A. J. Kong, “A Hybrid Method for the Calculation of the Resistance and Inductance of Transmission Lines with Arbitrary Cross Sections,” IEEE Trans. on Microwave Theory and Techniques, Vol. 39, pp. 1338-1347, 1991.
[21]L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evaluation for Timing Analysis,” IEEE Trans. on Computer Aided Design, Vol.9, pp. 352-366, 1990.
[22]H. A. Wheeler, “Formulas for the Skin-effect,” Proceedings of the Institute of Radio Engineers, Vol. 30, pp. 412-424, 1942.
[23]B. K. Sen and R. L. Wheeler, “Skin Effects Models for Transmission Line Structures using Generic SPICE Circuit Simulators,” the IEEE 7th topical Meeting on Electrical Performance of Electronic Packaging, pp. 128 – 131, Oct., 1998.
[24]J. Griffith, P. Reynolds, D. Powell, G.. Wojcik, R. Richards, and P. Wynn, “Cable Parameters and Acoustic Probe Performance,” IEEE Ultrasonics Symposium, Vol. 2, pp. 1055-1059, Oct., 2000.
[25]S. Asgari, J. O. Oti, and J. N. Subrahmanyam, “Lossy Skin Effect Modeling of Interconnects,” 2000 IEEE International Magnetics Conference, INTERMAG 2000 Digest of Technical Papers, pp.426-426, Apr., pp. 9-13, 2000.
[26]S. Kim and D. P. Neikirk, “Compact Equivalent Circuit Model for the Skin Effect,” IEEE MTT-S International Microwave Symposium and Digest, Vol. 3, pp.1815-1818, Jun., 1996.
[27]P. E. Edward Sayre, “Development of a New Transmission Line Skin Effect Model for SPICE Evaluations - Simulations and Measurements” North East Systems Associates, Inc., 2004.