研究生: |
劉康民 Liu, Kang Ming |
---|---|
論文名稱: |
含長碳鏈雙胺模板之鎵磷酸鹽結構及餘輝發光研究 Long-Linear Alkyl Chain Diamine Templated Gallium Phosphate Structures and Afterglow Properties |
指導教授: |
王素蘭
Wang, Sue Lein |
口試委員: |
鄭建鴻
李光華 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 長碳鏈雙胺 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨為合成新穎、具有餘輝發光性質的鎵磷酸鹽結構。利用長碳鏈雙
胺為模板,在水熱反應條件下,成功的合成到一個具有綠色餘輝、兩個具有黃色
餘輝的化合物,其結構皆利用單晶 X-ray 繞射方法鑑定。由於化合物皆具有的特
殊發光性質-餘輝(afterglow),此篇論文中將針對化合物結構、餘輝發光性質進
行研究探討,研究成果依餘輝光色之不同,分為A、B 兩系列討論:
A系列包含一個以1,12-Diaminododecane (DADD)作為模板的二維層狀結構,
(H2DADD)[Ga2O2(HPO4)2] (A1),無機層是鎵氧六面體以共邊的形式連接形成的
一維無限鏈,再由磷酸根連接所組合而成。A1 具有綠色餘輝發光的性質且肉眼
觀察可達兩秒,此種餘輝放光形式與本實驗室過去綠色餘輝化合物成果相似。餘
輝發光基本上須藉由結構缺陷捕捉電子,使得發光的生命期延長,以電子順磁共
振光譜數據測量,A1 結構中確實存在缺陷,推測缺陷位於磷酸根。由A1 磷光放
光圖譜顯示,其與上述綠色餘輝化合物皆具有相同三重峰放光形式,比較A1 與
其餘的綠色餘輝發光化合物的生命期得到,餘輝發光的時間能藉由芳香酸與無機
骨架產生氫鍵和金屬的進入來增加。在此長碳鏈雙胺所合成的餘輝系統中,A1
進一步證實加強餘輝性質的方法,使金屬磷酸鹽系統中的餘輝發光系統更加完善。
B 系列包含兩個具有黃色餘輝發光的晶體,利用 2,6-Naphalenedicarboxylic
acid (NDC)合成出(H2DADD)4(NDC)(H2PO4)2(HPO4)2 ·2H2O (B1),具有一秒的黃
色餘輝。由A 系列的研究中發現,長碳鏈雙胺須與芳香酸長度匹配才能引入結
構中,因此利用長度與NDC 匹配的長碳鏈雙胺1,10-Diaminodecane (DAD)當作
模板並加入金屬來增加餘輝的生命期,成功合成出具有兩秒黃色餘輝的二維層狀
鎵磷酸鹽(HDAD)4[Ga6(OH)4 (NDC)(HPO4)8] (B2)。以電子順磁共振光譜數據測量,
其訊號位置與A1 相似,推測B1、B2 應具有與A1 相似之結構缺陷。從磷光放
光圖譜顯示,B 系列也具有三重峰放光形式,但放光位置卻較A1 紅位移50 nm,
推測NDC 芳香性的進入,是造成放光光色不同的主因。在生命期的測量發現,
B2 確實能藉由金屬重原子的加入而延長餘輝,此與A 系列結論相同,但B2 結
構中NDC 與無機骨架並無形成氫鍵作用力,無法有效的延長餘輝,因此生命期
較A 系列中的綠色餘輝化合物短。與綠色餘輝相比,黃色餘輝在文獻上相對罕
見,因此B 系列在餘輝系統中有很大的突破。
The thesis is forcing on the study of afterglow properties for two categories of
phosphate compounds. They were synthesized using long-linear alkyl chain diamines
under hydrothermal conditions. Three compounds are presented, all were structurally
characterized in detail by single-crystal X-ray diffraction methods to facilitate
elucidation of the structure-property relationships. By UV-light excitations, one would
display fluorescence in green while the other two in yellow. Remained emissions were
observed for some time after removal of the UV-light source for all three compounds.
The afterglow properties were studied to disclose possible emission origins and
mechanisms and factors governing the lifetime.
Category A contains one gallium phosphate, (H2DADD)[Ga2O2(HPO4)2] (A1;
where DADD = 1,12-Diaminododecane). It adopts a two-dimensional layered structure
with DADD deprotonated, residing between two adjacent layers. The inorganic
[Ga2O2(HPO4)2] layer is built up with infinite octahedral chains of GaO6, and HPO4
tetrahedra. The duration of the afterglow emission for A1 was up to two seconds. The
afterglow was suspected to associate with lattice defects related to trapped electrons.
Such kind of defects was diagnosed on A1 by electron paramagnetic resonance (EPR)
spectral study. Factors that could affect the duration of the afterglow emission were
found to closely relate to hydrogen bonding pattern between the organic species and the
inorganic layers. The presence of heavy metal ions could as well play a role to extend
the lifetime of the afterglow emission.
Category B consists of two compounds synthesized using the organic acid, 2,6-
naphalenedicarboxylicacid (NDC), combined with DADD or 1,10-diaminodecane
(DAD), and having the formulas (H2DADD)4(NDC)(HPO4)2(H2PO4)2·2H2O (B1),
and (HDAD)4[Ga6(OH)4(NDC)(HPO4)8] (B2). Both showed yellow light afterglow,
with a duration up to two seconds. But the lifetime was a bit shorter for B1 than B2.
Presumably the lifetime can be enhanced by metals and B1 contains no metal ions in
structure. The lattice defects in series B is similar to that of series A. Compared to A1,
the emission bands of B1 and B2 both red-shifted approximately by 50 nm. It is likely
due to the presence of NDC in addition to the amines.
[1] A. F. Cronstedt, Akad handl. Stockholm 1756, 17, 120.
[2] J. Fang, P. H. Holloway, J. E. Yu, K. S. Jones, B. Pathangey, E.
Brettschneider, T. Anderson, J. Applied Surface Science, 1993, 7
[3] (a) Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry and
Use, J. Wileyand Sons, New York, 1974; (b)Venuto, P. B. Microporous
Mater., 1994, 2, 297.
[4] Barrer, R. M.; Denny, P. J. J. Chem. Soc.1961, 971
[5]Raul.F.Lobo,Michael.Tsapatsis,Clemens.C.Freyhardt,ShervinKhodaba
ndeh,Paul Wagner,Cong-Yan Chen,Kenneth J. Balkus Jr,Stacey I.
Zones,and Mark E. Davis, J. Am. Chem. Soc. 1997, 119, 8474
[6]Masahito.Yoshikawa,Paul.Wagner,Mark.Lovallo,Katsuyuki.Tsuji,Taka
hiko.Takewaki,Cong.Chen,.Larry.W.Beck,Chris.Jones,Michael.Tsapatsis,
Stacey.I.Zones,and Mark.E.Davis, J. Phys. Chem. B.1998, 102, 7139
[7] Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen,
E.
M. J. Am. Chem. Soc., 1982, 104, 1146.
[8] Jones, R. H.; Thomas, J. M.; Chen, J.; Xu. R.; Huo, Q.; Li, S.; Ma, Z.;
Chippindale,A. M. J. Solid Sate Chem. 1993, 102, 204.
[9] Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J. M.; Crowder, C.
Nature 1988,331, 698.
[10] P. B. Moore, J. Shen, Nature, 1983, 306, 356.
[11] Davis. M. E.,Saldarriaga,C.Montes, J.Garces,C.Crowder,
Nature,1988, 331, 698.
[12] M. Estermann, L. B. McKusker, C. Baerlocher, A. Merrouche, H.
Kessler, Nature,1991, 352, 320.
1‐28
[13] Q. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M.
Chippindale, J. Chem. Soc. Chem. Commun.1992, 875.
[14] Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao,
Angew. Chem. Int. Ed. 2001, 40, 2166.
[15] J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew.
Chem. Int. Ed. 2006, 45, 2546.
[16] Y. Yang, N. Li, H. Song, H. Wang, W. Chen, S. Xiang, Chem.
Mater.2007, 19, 1889.
[17] L. Zhao, J. Y. Li, P. Cheri, R. Xu, Chem. Mater.2008, 20, 17.
[18] M. B. Doran, A. J. Norquist, D. O’Hare, Chem. Comm. 2002, 2946.
[19] I. Bull, P. S. Wheatley, P. Lightfoot, R. E. Morris, E. Sastre, P. A.
Wright, Chem. Comm.2002, 1180.
[20] T. E. Altrecht-Schmitt, Angew. Chem. Int. Ed.2005, 44, 4836.
[21] Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao,
Angew. Chem. Int. Ed.2001, 40, 2166.
[22] J. Plevert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi,
M. O’Keeffe, J. Am. Chem. Soc.2001, 123, 12706.
[23] X. Zou, T. Conradson, M. Klingstedt, M. S. Dadachov, M. O’Keeffe,
Nature, 2005, 437, 716.
[24] T. Wessels, C. Baerlocher, L. B. McCusker, E. J. Creyghton, J. Am.
Chem. Soc.1999, 121, 6242.
[25] A. Burton, S. Elomari, C. Y. Chen, C. M. Ronald, I. Y. Chan, L. M.
Bull, C. Kibby, T. V. Harris, S. I. Zones, E. S.Vittoratos, Chem. Eur. J.
2003, 9, 5737.
[26] K. G. Strohmaier, D. E. W. Vaughan, J. Am. Chem. Soc.2003, 125,
16035.
[27] M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J.Wu,
J. S. Huang, Angew. Chem. Int. Ed. 2007, 46, 1.
[28] I. Boy, F. Stowasser, G. Schafer, R. Kniep, Chem. Eur. J. 2001, 7,
834.
[29] J. Zhu, X. Bu, P. Feng, G. D. Stucky, J. Am. Chem. Soc. 2000, 122,
11563.
[30] P. S. Halasyamani, S. M. Walker, D. O’Hare, J. Am. Chem. Soc.
1999, 121, 7415.
[31] M.Eddaodi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.
M.Yaghi, Science, 2002, 295, 469.
[32] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger,
O. M. Yaghi, Science, 2005, 310, 1166.
[33] B. Wang, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi,
Nature, 2008, 453, 207.
[34]Jie Liang, Jie Su, Xiaodan Luo, Yingxia Wang, Haoquan Zheng, Hong
Chen, Xiaodong Zou, Jianhua Lin, Junliang Sun. Angew.Chem.2015,
127,7398
[35]P. C. Jhang, N. T. Chuang, S. L. Wang, Angew. Chem., Int. Ed. 2010,49,
4200.
[36]Y. C. Chang, S. L. Wang, J. Am. Chem. Soc.2012, 134, 9848
[37]L. M. Li, K. Cheng, F. Wang, J. Zhang, Inorg. Chem. 2013, 52, 5654
[38] Takei, T.; Sekijima, K.; Wang, D.; Kumada, N.; Kinomura, N. Solid
State Ionic, 2004, 170, 111.
[39] Zima, V.; Benes, L.; Melanova, K.; Vlcek, M. J. Solid State
Chem.,2002, 163, 281.
[40] Espina, A.; Menendez, F. Mater. Res. Bulletin, 1998, 33, 763.
1‐30
[41] Peng, L.; Yu, J.; Li, Y.; Xu, R. Chem. Mater., 2005, 17.
[42] Plevert, J; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O.M.;
O’Keeffe, M. J. Am. Chem. Soc., 2001, 123, 12706.
[43] D. W. Breck, Zeolite Molecular Sieves,Wiley, New York, 1974
[44] J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature, 1999, 398,
227.
[45] R. D. Miller, Science 1999, 286, 421.
[46] J. M. Thomas, Angew. Chem., Int. Ed. 1999, 38, 3588.
[47] S. M. Kuznickl, et al. Nature, 2001, 412, 720.
[48] M. E. Davis, Nature, 2002, 417, 813;
[49] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe,
O. M. Yaghi, Science, 2002, 295, 469.
[50] P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K.
Cheetham, J. Am. Chem. Soc. 2003, 125, 1309.
[51] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43,
2334.
[52] R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C.
N.R. Rao, Chem. Rev. 2008, 108, 3549.
[53] H.Li, M.Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
[54] Kuangda Lu, Chunbai He, and Wenbin Lin. J. Am. Chem. Soc. 2015,
137. 7600
[55] L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev.2009, 38, 1294.
[56] S. S. Han, J. L. Mendoza-Cortés, W. A. Goddard III, Chem. Soc.Rev. 2009, 38, 1460.
[57] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
[58] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc.
Rev. 2009, 38, 1330.
[59] [43] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev.
2007, 36, 770.
[60] C. H. Lin, S. L. Wang, K. L. Lii, J. Am. Chem. Soc. 2001, 123, 4649
[61] Chia-Her Lin, Ya-Ching Yang, Chun-Yu Chen, S. L. Wang, Chem.
Mate. 2006, 18, 2095.
[62] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc.
2004, 126, 1320.
[63] Y. H. Liao, Y. C. Jiang, S. L. Wang, J. Am. Soc. 2004, 127, 12794.
[64] Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Soc. 2005, 127, 9986.
[65] Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Soc. 2007, 129, 5350.
[66] Y. C. Yang, S. L. Wang, J. Am. Soc. 2008, 130, 1146.
[67] P. C. Jiang, Y. C. Yang, Y. C. Lai, Y. C. Liu, S. L. Wang, Angew. Chem
Int. Ed. 2009, 48, 742.
[68] S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int.
Ed. 2009, 48, 6124.
[69] P. C. Jiang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010,
49, 4200.
[70] S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319.
[71] Y. C. Chang, S. L. Wang, J. Am. Chem. Soc. 2012, 134, 9848.
1‐32
[72] H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H.
Huang, Y. H. Lee, S. L. Wang, Science, 2013, 339, 811.
[73] H. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965-968.
[74 Ming-Jhe Sie, Chia-Her Lin, and Sue-Lein Wang . J. Am. Chem. Soc..
2016, ASAP
[75] Hui-Lin Huang, Yu-Ting Huang, and Sue-Lein Wang. Inorg. Chem
.2016.accepted
[76] J. Li, L. Li, J. Liang, P. Chen, J. Yu, Y. Xu, R. Xu, Cryst. Growth &
Des. 2008, 8 , 2318.
[77] C. H. Lin, S. L. Wang, K. H. Lii, J. Am. Chem. Soc. 2001, 123, 4649
[78] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc.
2004, 126, 1320.
[79] Y. C. Liao, Y. C. Jiang, S. L. Wang, J. Am. Chem. Soc. 2005,
127,12794.
[80] Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2005, 127,9986.
[81] Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350.
[82] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期.
[83] APEX II software package; Bruker AXS, Madison, WI, 2008.
[84] Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Bruker
AXS, Madison, WI, 1998.