研究生: |
劉巧蝶 Liu, Chiao-Tieh |
---|---|
論文名稱: |
音樂節奏對運動中自律神經調控的效果 Effect of music tempo on autonomic nervous system regulation in exercise |
指導教授: |
林貴福
Lin, Kuei-Fu |
口試委員: |
林正常
LIN, Jung-Charng 吳慧君 Wu, Huey-June |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 運動科學系 Physical Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 有氧運動 、音樂偏好 、心率變異度 |
外文關鍵詞: | aerobic exercise, music preference, heart rate variability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:觀察運動中聆聽快節奏、慢節奏及無節奏反映在心率變異度的變化,指標包括總功率、高頻功率、低頻功率及低高頻比。方法:招募19名健康男大學生(年齡21.50 ± 2.27歲;身高174.07 ± 6.48 公分;體重67.11 ± 9.20公斤)為研究對象,進行三次運動強度為50%的最大攝氧量,持續30分鐘的原地踏車運動,實驗處理分別有快節奏、慢節奏及無節奏等操弄,並以Polar RS800CX記錄全程心跳率。所得資料先以相依樣本t檢定考驗安靜休息與運動中自律神經系統之差異,再以重複量數單因子變異數分析檢驗三種音樂刺激對運動中自律神經調控的差異,需要進行事後比較時,採用Bonferroni法。結果:休息狀態與運動中的總功率、高頻功率、低頻功率及低高頻比相比,皆達顯著差異(p>.05)。快節奏、慢節奏及無節奏的平均總功率分別為302.35 ± 228.08 ms2、340.95 ± 257.14 ms2及358.99 ± 312.73 ms2,無顯著差異(p>.05);高頻功率分別為45.20 ± 36.06 ms2、34.08 ± 28.84 ms2及81.24 ± 85.04 ms2,達顯著差異(p<.05),事後比較顯示無節奏高於慢節奏;低頻功率分別為114.44 ± 89.29 ms2、138.67 ± 126.33 ms2及148.88 ± 168.29 ms2,無顯著差異(p>.05);低高頻比分別為5.67 ± 2.85、6.78 ± 3.39及5.08 ± 2.63,達顯著差異(p<.05),事後比較顯示慢節奏高於快節奏及無節奏。結論:運動中聆聽不同節奏音樂,無法影響交感及副交感神經活性;但慢節奏音樂可提升自律神經活性平衡。
Purpose: To investigate the changes of heart rate variability (HRV) while listening to fast-tempo music (FTM), slow-tempo music (STM) and non-music (NM) during exercise. HRV indicators included total power, high frequency power, low frequency power, and LF/HF ratio. Methods: Nineteen healthy male college students were recruited (mean age 21.50 ± 2.27 yrs.; height 174.07 ± 6.48 cm; weight 67.11 ± 9.20 kg). Each participant performed three bouts of 30-minute continuous cycling exercise on ergometer with intensity at 50VO2max under manipulation of FTM, STM, and NM as experimental treatments. Heart rates recorded by heart rate monitor (Polar RS800CX). Collected data analyzed with paired t-test to examine the differences of automatic nervous system regulation between rest and exercise, and with repeated one-way ANOVA among three experimental treatments on music tempo. Bonferroni method for post-hoc comparison when needed. Results: Total power, high frequency power, low frequency power and LH/HF ratio were all showed significant differences between rest and exercise (p<.05). The average total power under FTM, STM and NM conditions were 302.35 ± 228.08 ms2, 340.95 ± 257.14 ms2, and 358.99 ± 312.73 ms2respectively, and didn’t show any significant difference (p>.05). The high frequency power values in each condition were 45.20 ± 36.06 ms2, 34.08 ± 28.84 ms2, and 81.24 ± 85.04 ms2 respectively, and showed significant difference (p<.05). Post-hoc comparison indicated higher value in NM than FTM condition. The low frequency power values in each condition were 114.44 ± 89.29 ms2, 138.67 ± 126.33 ms2, and 148.88 ± 168.29 ms2 respectively, and didn’t show any significant difference (p>.05). The LH/HF ratio values in each condition were 5.67 ± 2.85, 6.78 ± 3.39, and 5.08 ± 2.63 respectively, and showed significant difference (p<.05). Post-hoc comparison indicated higher value in STM than FTM and NM. Conclusions: During exercise, listening to music with different tempos or no music did not affect the activation of sympathetic and parasympathetic nerve system. However, listening to slow-tempo music could improve the sympathetic and parasympathetic nerve balance.
參考文獻
衛生福利部(2017)。105年死因統計結果分析。臺北市:衛生福利部。
Amaral, J. A. T. D., Nogueira, M. L., Roque, A. L., Guida, H. L., Abreu, L. C. D., Raimundo, R. D., ... & Valenti, V. E. (2014). Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities. Archives of the Turkish Society of Cardiology, 139-146.
Archana, R., & Mukilan, R. (2016). Beneficial effect of preferential music on exercise induced changes in heart rate variability. Journal of Clinical & Diagnostic Research, 10(5), 9-11.
Astorino, T. A., & Cottrell, T. (2011). Reliability and validity of the Velotron RacerMate cycle ergometer to measure anaerobic power. International Journal of Sports Medicine, 32, 1-6.
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889-919.
Biagini, M. S., Brown, L. E., Coburn, J. W., Judelson, D. A., Statler, T. A., Bottaro, M., ... & Longo, N. A. (2012). Effects of self-selected music on strength, explosiveness, and mood. The Journal of Strength & Conditioning Research, 26(7), 1934-1938.
Billman, G. E. (2002). Aerobic exercise conditioning: A nonpharmacological antiarrhythmic intervention. Journal of Applied Physiology, 92(2), 446-454.
Brownley, K. A., McMurray, R. G., & Hackney, A. C. (1995). Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. International Journal of Psychophysiology, 19(3), 193-201.
Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., ... & Lombardi, F. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381.
Chandola, T., Britton, A., Brunner, E., Hemingway, H., Malik, M., Kumari, M., & Marmot, M. (2008). Work stress and coronary heart disease: What are the mechanisms? European Heart Journal, 29(5), 640-648.
Chtourou, H., Chaouachi, A., Hammouda, O., Chamari, K., & Souissi, N. (2012). Listening to music affects diurnal variation in muscle power output. International Journal of Sports Medicine, 33(1), 43-47.
Cole, Z., & Maeda, H. (2015). Effects of listening to preferential music on sex differences in endurance running performance. Perceptual & Motor Skills, 121(2), 390-398.
Cooke, W. H., & Carter, J. R. (2005). Strength training does not affect vagal–cardiac control or cardiovagal baroreflex sensitivity in young healthy subjects. European Journal of Applied Physiology, 93(5-6), 719-725.
Essner, A., Sjöström, R., Ahlgren, E., & Lindmark, B. (2013). Validity and reliability of Polar® RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill. Physiology & Behavior, 114, 1-5.
Ha, J. H., Park, S., Yoon, D., & Kim, B. (2015). Short-term heart rate variability in older patients with newly diagnosed depression. Psychiatry Research, 226(2), 484-488.
Hagen, J., Foster, C., Rodríguez-Marroyo, J., De Koning, J. J., Mikat, R. P., Hendrix, C. R., & Porcari, J. P. (2013). The effect of music on 10-km cycle time-trial performance. International Journal of Sports Physiology & Performance, 8, 104-106.
Huikuri, H. V., & Mäkikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience, 90(1), 95-101.
Ishida, R., & Okada, M. (1997). Spectrum analysis of heart rate variability for the assessment of training effects. The Japanese Journal of Clinical Pathology, 45(7), 685-688.
Jarraya, M., Chtourou, H., Aloui, A., Hammouda, O., Chamari, K., Chaouachi, A., & Souissi, N. (2012). The effects of music on high-intensity short-term exercise in well trained athletes. Asian Journal of Sports Medicine, 3(4), 233.
Kaikekonn, P., Rusko, H., & Martinmäki, K. (2008). Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scandinavian Journal of Medicine & Science in Sports, 18(4), 511-519.
Karageorghis, C. I., & Priest, D. L. (2012). Music in the exercise domain: A review and synthesis (Part I). International Review of Sport & Exercise Psychology, 5(1), 44-66.
Karemaker, J. M. (1997). Heart rate variability: Why do spectral analysis? Heart, 77(2), 99.
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394-421.
Macfarlane, D. J., & Wong, P. (2012). Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. European Journal of Applied Physiology, 112(7), 2539-2547.
Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage, 28(1), 175-184.
Michael, S., Jay, O., Halaki, M., Graham, K., & Davis, G. M. (2016). Submaximal exercise intensity modulates acute post-exercise heart rate variability. European Journal of Applied Physiology, 116(4), 697-706.
O'Brien, I. A., O'Hare, P. A. U. L., & Corrall, R. J. (1986). Heart rate variability in healthy subjects: Effect of age and the derivation of normal ranges for tests of autonomic function. British Heart Journal, 55(4), 348-354.
Puig, J., Freitas, J., Carvalho, M. J., Puga, N., Ramos, J., Fernandes, P. (1993). Spectral analysis of heart rate variability in athletes. The Journal of Sports Medicine & Physical Fitness, 33(1), 44-48.
Ramaekers, D., Ector, H., Aubert, A. E., Rubens, A., & Van de Werf, F. (1998). Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective?. European Heart Journal, 19(9), 1334-1341.
Ruf, K. C., Fehn, S., Bachmann, M., Moeller, A., Roth, K., Kriemler, S., & Hebestreit, H. (2012). Validation of activity questionnaires in patients with cystic fibrosis by accelerometry and cycle ergometry. BMC Medical Research Methodology, 12(1), 43.
Sandercock, G. R., & Brodie, D. A. (2006). The use of heart rate variability measures to assess autonomic control during exercise. Scandinavian Journal of Medicine & Science in Sports, 16(5), 302-313.
Sandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: Inferences from meta-analysis. Medicine & Science in Sports & Exercise, 37(3), 433-439.
Seals, D. R., & Chase, P. B. (1989). Influence of physical training on heart rate variability and baroreflex circulatory control. Journal of Applied Physiology, 66(4), 1886-1895.
Simpson, S. D., & Karageorghis, C. I. (2006). The effects of synchronous music on 400-m sprint performance. Journal of Sports Sciences, 24(10), 1095-1102.
Stein, P. K., Ehsani, A. A., Domitrovich, P. P., Kleiger, R. E., & Rottman, J. N. (1999). Effect of exercise training on heart rate variability in healthy older adults. American Heart Journal, 138(3), 567-576.
Stork, M. J., Kwan, M., Gibala, M. J., & Martin Ginis, K. A. (2014). Music enhances performance and perceived enjoyment of sprint interval exercise. Medicine & Science in Sports & Exercise. 47(5), 1052-1060.
Tan, F., Tengah, A., Nee, L. Y., & Fredericks, S. (2014). A study of the effect of relaxing music on heart rate recovery after exercise among healthy students. Complementary Therapies in Clinical Practice, 20(2), 114-117.
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122-131.
Tulppo, M. P., Mäkikallio, T. H., Seppänen, T., Laukkanen, R. T., & Huikuri, H. V. (1998). Vagal modulation of heart rate during exercise: Effects of age and physical fitness. American Journal of Physiology-Heart & Circulatory Physiology, 274(2), H424-H429.
Tulppo, M. P., Mäkikallio, T. H., Takala, T. E., Seppänen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology, 271, H244-252.
Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(3), 593-601.
Urakawa, K., & Yokoyama, K. (2005). Music can enhance exercise-induced sympathetic dominancy assessed by heart rate variability. The Tohoku Journal of Experimental Medicine, 206(3), 213-218.
Yamamoto, T., Ohkuwa, T., Itoh, H., Kitoh, M., Terasawa, J., Tsuda, T., ... & Sato, Y. (2003). Effects of pre-exercise listening to slow and fast rhythm music on supramaximal cycle performance and selected metabolic variables. Archives of Physiology & Biochemistry, 111(3), 211-214.
Yamamoto, Y., Hughson, R. L., & Peterson, J. C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. Journal of Applied Physiology, 71(3), 1136-1142.
Yamashita, S., Iwai, K., Akimoto, T., Sugawara, J., & Kono, I. (2006). Effects of music during exercise on RPE, heart rate and the autonomic nervous system. Journal of Sports Medicine & Physical Fitness, 46(3), 425.