研究生: |
黎煥治 Huan-Chih Li |
---|---|
論文名稱: |
以光學介電泳力加速微顆粒免疫檢測法之速率 Reaction Rate Enhancement of Micro-bead Protein Immunoassay Using Dielectrophoretic Force |
指導教授: |
葉哲良
Jer-Liang Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 光介電泳力 、微球 、蛋白質免疫檢測法 、碰撞機率 、擴散效應 |
外文關鍵詞: | optical dielectrophoretic force, micro bead, protein immunoassay, probability of collision, diffusion |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文利用光介電泳力混合微球與樣本液,加速以微球為載體之蛋白質免疫檢測法之反應速率,減少反應時間。
根據文獻資料,微小化之蛋白質免疫檢測法,如蛋白質免疫檢測微陣列晶片,其理論反應時間很短。但是,當樣本液之濃度極低時,其樣本之擴散效應反而減緩了蛋白質之間的反應。實際的蛋白質免疫檢測微陣列檢測法反應時間變得非常長。擴散效應對反應速率造的影響在低濃度之樣本下更為明顯。
在本論文中,使用微球為載體之蛋白質免疫檢測法,以減少樣本液反應之擴散距離,並增加蛋白質間之反應面積。並利用光學介電泳力操縱微球,將微球與樣本液充分混合,以增加兩者之間之碰撞機率。
實驗中,表面處理覆蓋streptavidin之微球,利用光學介電泳力之操縱,可自由地在反應晶片內移動,增加與液體中之生物素結合之速率。
最後驗證經由光學介電泳力之混合,可增加微球蛋白質免疫檢測法之速率,並可縮短反應時間,為無攪拌狀態之三分之一。且可偵測之最低反應濃度為100nM。
This study demonstrated a method for accelerating the reaction of the micro-bead protein immunoassay via mixing of the beads with the sample.
According to the previous studies, when the scale of the protein immunoassay is small, such as micro-spot protein microarray, the theoretical reaction rate of the protein immunoassay microarray is fast. But when the concentration of the sample is very low, the reaction rate becomes very slow and it takes a long time to equilibrium the reaction. The effect of diffusion is very significant especially in low concentration and low volume.
In this study, the micro-bead protein immunoassay was used to reduce the diffusion distance and increase the reaction surface. Manipulation of the beads by optical dielectrophoretic force was to mix the beads with the sample fluid. Mixing increased the probability of collision between the beads and protein.
The streptavidin-coated beads were manipulated by the dielectrophoretic force induced by the light generated from the liquid crystal display (LCD) projector. The beads traveled through the biotin solution in the chamber on the chip. The movement of beads largely increased the collision probability between streptavidin on the beads and biotin in the fluids. Mixing was proved to increase the reaction rate of the micro-bead protein immunoassay via the manipulation by optical dielectrophoretic force. In this thesis, the time to reach equilibrium has been reduced to one third of that of the static incubation condition. The fluorescence intensity has also been increased to three times stronger than that of the condition of non-mixing. The limitation of detection of the mixing chip can be 100nM.
[1] H. W. Robinson, “C. G. Hogden, The Biuret Reaction in the Determination of Serum Proteins. I. A Study of the Conditions Necessary For the Production of a Stable Color Which Bears a Quantitative Relationship to the Protein Concentration,” Journal of Biological Chemistry, Vol. 135, pp. 707-725, 1940
[2] http://brc.se.fju.edu.tw/
[3] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, pp. 265-275, 1951
[4] M. M. Bradford, “A Rapid and Sensitive for the Quantitation of Microgram Quantitites of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, pp. 248-254, 1976
[5] E. Layne, “Spectrophotometric and Turbidimetric Methods for Measuring Proteins,” Methods in Enzymology, Vol. 3, pp. 447-455, 1957
[6] http://juang.bst.ntu.edu.tw/
[7] K. Kato, Y. Hamaguchi, H. Fukui and E. Ishikawa, “Enzyme-linked Immunoassay. I. Novel Method for Synthesis of the Insulin-beta-D-galactosidase Conjugate and its Applicability for Insulin Assay,” Journal of Biochemistry, Vol. 78, pp. 235-237, 1975
[8] http://www.biosystemdevelopment.com
[9] http://www.biology.arizona.edu
[10] N. B. Adey, M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin,T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenhoffer, B. K. Dalley, M. R. McNeely, “Gains in Sensitivity with a Device that Mixes Microarray Hybridization Solution in a 25-□m-Thick Chamber,” Analytical Chemistry, Vol. 74, pp. 6413-6417, 2002
[11] A. Bange, H. B. Halsall, W. R. Heineman, “Microfluidic Immunosensor Systems,” Biosensors and Bioelectronics, Vol. 20 pp. 2488-2503, 2005
[12] M. A. M. Gijs, “Magnetic Bead Handling on-chip: New Opportunities for Analytical Applications,” Microfluid Nanofluid, Vol. 1, pp. 22-40, 2004
[13] K. Sato, M. Tokeshi, H. Kimura, and T. Kitamori, “Determination of Carcinoembryonic Antigen in Human Sera by Integrated Bead-bed Immunoasay in a Microchip for Cancer Diagnosis,” Analytical Chemistry, Vol. 73, pp. 1213-1218, 2001
[14] Y. Wu, G. Zwartz, G. P. Lopez, L. A. Sklar, and T. Buranda, “Small-volume Rapid-mix Device for Subsecond Kinetic Analysis in Flow Cytometry,” Cytometry Part A, Vol. 67A, pp. 37-44, 2005
[15] K. Hirakawa, M. Katayama, N. Soh, K. Nakano, T. Imato, “Electrochemical Immunoassay for Vitellogenin Based on Sequential Injection Using Antigen-immobilized Magnetic Microbeads,” Analytical Sciences, Vol.22, pp. 81-86, 2006
[16] J. Auerswald, V. Linder, H. F. Knapp, “Evaluation of a Concept for On-chip Biochemical Assay Based on Dielectrophoresis-controlled Adhesion of Beads,” Microelectronic Engineering, Vol. 73–74, pp. 822–829, 2004
[17] H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978
[18] Y. S. Lu, Y. P. Huang, J. A. Yeh, and C. Lee, “Image Driven Cell Manipulation using Optical Dielectrophoresis (ODEP),” Proceeding of the Second Asian and Pacific Rim Symposium on Biophotonics, pp. 238-239, 2004
[19] Y. Huang and R. Pethig, “Electrode Design for Negative Dielectrophoresis,” Measurement Science & Technology, Vol. 2, pp. 1142-1146, 1991
[20] X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx and R. Pethig, “Selective Dielectrophoretic Confinement of Bioparticles in Potential Energy Wells,” Journal of Physics D: Applied Physics, Vol. 26, pp. 1278-1285, 1993
[21] S. Masuda, M. Washizu and I. Kawabata , “Movement of Blood Cells in Liquid by Non-uniform Travelling Field,” IEEE Trans. LAS , pp. 217-222, 1988
[22] G. Fuhr, R. Hagedorn, T. Muller, B. Wagner, and W. Benecke, “Linear Motion of Dielectric Particles and Living Cells in Microfabricated Structures Induced by Traveling Electric Fields,” Proceedings of IEEE Micro Electro Mechanical Systems, pp. 259-264, 1991
[23] P. Y. Chiou, Z. Chang, and M. C. Wu, “A Novel Optoelectronic Tweezer Using a Light Induced Dielectrophoresis,” Proceedings of IEEE/LEOS International Conf. Optical MEMS, pp.8-9, 2003
[24] Y. S. Lu, Y. H. Chang, S. P. Tseng and J. Andrew Yeh, “Virtual Particle Channels Based on Optical Dielectrophoresis Forces,” Proceedings of IEEE/LEOS International Conf. Optical MEMS, pp.20-21, 2004
[25] Y. Wu, P. C. Simons, G. P. Lopez, L. A. Sklar, T. Buranda, “Dynamics of Fluorescence Dequenching of Ostrich-quenched Fluorescein Biotin: A Multifunctional Quantitative Assay for Biotin,” Analytical Biochemistry, Vol. 342, pp. 221-228, 2005
[26] W. Kusnezow, Y. V. Syagailo, l. Goychuk, J. D. Hoheisel and D. G. Wild, "Antibody Microarrays: the Crucial Impact of Mass Transport on Assay Kinetics and Sensitivity, " Expert Rev. Mol. Diagn., Vol. 6, pp. 11-124, 2006
[27] K. V. Klenin, W. Kusnezow and J. Langowski, “Kinetics of Protein Binding in Solid-phase Immunoassays: Theory,” The journal of chemical physics, Vol. 122, pp. 214715 1-11.