研究生: |
楊傑銘 Yang, Jan-Min |
---|---|
論文名稱: |
染料敏化太陽能電池陽極含浸方法:壓力擺盪含浸法 A Novel Method for Impregnating Anode in Dye-Sensitized Solar Cell:Pressure Swing Impregnation |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 染料敏化太陽能電池 、二氧化碳 、超臨界流體, 、壓力擺盪 、含浸 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在染料敏化太陽能電池(Dye Sensitized Solar Cell, DSSC)製造過程的陽極色素增感(Dye-sensitized)階段,應用二氧化碳膨脹性流體(CO2-expanded Liquids, CXLs)、高壓氣體反溶劑(Compressed Gas Anti-solvent)以及壓力擺盪含浸(Pressure Swing Impregnation)和超臨界乾燥等多種方法,探討引入高壓二氧化碳提昇光敏染料含浸效果的可行性。
在本研究中特別提出一種壓力擺盪含浸法,用以製備染料敏化太陽能電池的陽極。該方法將高壓二氧化碳注入溶有光敏染料的溶液中,使該溶液形成二氧化碳膨脹性流體,降低該溶液之表面張力與黏度以利於光敏染料質傳擴散,接著再注入更高壓的二氧化碳,利用反溶劑效應將光敏染料自溶液中析出並沈積於陽極孔洞內,藉以提昇光電轉換效率。
實驗結果顯示與傳統的濕式含浸(Wet Impregnation)相比,採用壓力擺盪含浸法進行陽極色素增感,在900與1800 psi之間擺盪操作,含浸時間最短僅需原來的二分之一,光電轉換效率提昇比例最高更可達到百分之十以上。
Bando, K.K.; Mitsuzuka, Y.; Sugino, M.; Sugihara, H.; Sayama, K. and Arakawa, H. “Attachment of an organic dye on a TiO2 substrate in supercritical CO2: application to a solar cell” Chem. Lett. (1999) 853-854.
Bond, G. C. Heterogeneous Catalysis Principles and Applications, 2nd ed.; Oxford University Press, New York (1987)
Chapin, D. M.; Fuller, C. S. and Pearson, G. L.” A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25 (1954) 676
Chen, Y. C. and Tan, C. S. “Hydrogenation of p-chloronitrobenzene by Ni-B nanocatalyst in CO2-expanded methanol.’’ J. Supercrit. Fluids. 41 (2007) 272-278.
Drr, M.; Schmid, A.; Obermaier, M.; Yasuda, A. and Nelles, G. “Diffusion Properties of Dye Molecules in Nanoporous TiO2 Networks” J. Phys. Chem. A 109 (2005) 3967-3970.
Gallagher, P. M.; Coffey, M. P.; Krukonis, V. J. and Klasutis, N. “Gas Antisolvent Recrystallization: New Process to Recrystallize Compounds Insoluble in Supercritical Fluids” Amers. Chem. Soc., Symp. Ser. (1989) No.406.
Gallagher, P. M.; Coffey, M. P. and Krukonis, V. J. “Gas Anti-Solvent Recrystallization of RDX: Formation of Ultra-fine Particles of a Difficult-to-Comminute Explosive”, J. Supercritical Fluids, 5 (1992) 130.
Green, M.A. ” The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution” Prog. Photovolt: Res. Appl. 17 (2009) 183–189.
Grätzel, M. “Mesoscopic solar cells for electricity and hydrogen production from sunlight” Chem. Lett. 34 (2005) 8-13.
Grätzel, M. and Smestad, G.P. “Demonstrating Electron Transfer and Nanotechnology:A Natural Dye–Sensitized Nanocrystalline Energy Converter” J. Chem. Educ. 75 (1998) NO.6.
Heldebrant, D. J.; Witt, H.; Walsh, S.; Ellis, T.; Rauscher, J. and Jessop, P. G. “Liquid polymers as solvents for catalytic reductions” Green Chem. 8 (2006) 807-815.
Inakazu, F.; Noma, Y.; Ogomi, Y. and Hayase, S. “Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength” Appl. Phys. Lett. 93 (2008) 093304.
Jessop, P.G. and Subramaniam, B. “Gas-Expanded Liquids” Chem. Rev. 107 (2007) 2666−2694.
Krukpnis, V. J. ”Supercritical Fluid Nucleation of Difficult-to-Comminute Materials” AIChE Meeting, San Francisco, paper 140f.,Nov.,(1984).
Larson, K. A. and King, M. L. “Evaluation of Supercritical Fluid Extraction in the Pharmaceutical Industrial” Biotech. Ptog., 2(2) (1986) 73.
Lin, I. H. and Tan, C. S. "Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol" J. Supercrit. Fluids 46 (2008) 112-117.
Long, R. and Yang, R. T. “Pt/MCM-41 catalyst for selective catalytic reduction of nitric oxide with hydrocarbons in the presence of excess oxygen” Catal. Lett. 52 (1998) 91–96.
Matson, D. W.; Fulton, J. L.; Petersen, R.C. and Smith, R.D. “Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers” Ind. Eng. Chem. Res. 26 (1987) 2298-2306.
Nobuhiro, F.; Atsushi. F.; Ryohichi. K.; Ashraful. I.; Yasuo. C.; Masatoshi. Y.; Ryohsuke. Y. and Liyuan. H. “New Approach to Low-Cost Dye-Sensitized Solar Cells With Back Contact Electrodes” Chem. Mater. 20 (2008) 4974–4979.
Ogomi, Y.; Sakaguchi, S.; Kado, T.; Kono, M.; Yamaguchi, Y. and Hayase, S. “Ru dye uptake under pressured CO2 improvement of photovoltaic performances for dye-sensitized solar cells” J. Electrochem. Soc. 153 (2006) A2294-A2297.
O’Regan, B. and Grätzel, M. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353 (1991) 737-740.
Po1hler, H. and Kiran, E. ”Volumetric Properties of Carbon Dioxide + Ethanol at HighPressures” J. Chem. Eng. Data 42 (1997) 4384-388.
Sih, R.; Armenti, M.; Mammucari, R.; Dehghani. F. and Foster, N.R. “ Viscosity measurements on saturated gas-expanded liquid systems —Ethanol and carbon dioxide“ J. Supercrit. Fluids, 43 (2008) 460-468.
Tai, C. Y. and Cheng C-S. "Effect of CO2 on Expansion and Supersaturation of Saturated Solutions" AIChE J. 44 (1998) 989.
Tsubomura, H.; Matsumura, M.; Nomura, Y. and Amamiya, T. “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 261(1976) 402-403.
Wang, Z.S.; Kawauchi, H.; Kashima, T. and Arakawa, H. “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell” J. Coord. Chem. 248 (2004) 1381–1389.
Gu, W. and Tripp, C. P. ” Reaction of Silanes in Supercritical CO2 with TiO2 and Al2O3” Langmuir. 22 (2006) 5748-5752
林義翔, “以超(次)臨界流體技術製備複材及量測CO2膨脹溶液中之擴散係數” ,國立清華大學化學工程研究所博士論文 (2009)
柯建輝, “利用氣體反溶劑法分離芳香烴和石蠟烴” , 國立清華大學化學工程研究所碩士論文 (2000)
范和安, ”利用壓縮流體反溶劑CO2分離光導性高分子COC與甲苯溶劑” , 國立清華大學化學工程研究所碩士論文 (2002)
施易緯, “二氧化碳膨脹液體中對二甲苯氫化之研究” , 國立清華大學化學工程研究所碩士論文 (2006)
許哲瑋, “二氧化碳膨脹液體中對二甲苯氫化之研究” , 國立清華大學化學工程研究所碩士論文 (2007)
彭英利;馬承愚。超臨界流體技術應用手冊。化學工業出版社2005年1月
楊茹媛;翁敏航;陳皇宇;張育綺。由專利分析看染料敏化太陽能電池趨勢。光連雙月刊2008年5月No.75 62-71
徐英展;林建村。染料敏化太陽能電池之染料設計與發展。2009年1月中央研究院週報 No.1203 4-5