簡易檢索 / 詳目顯示

研究生: 曾詩文
Shih-Wen Tseng
論文名稱: 存在有頻率偏移之空-時MC-CDMA下鏈系統的信號偵測技術
Signal Detection of Space-Time Coded MC-CDMA Systems Downlink with Frequency Offset
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 62
中文關鍵詞: 頻率偏移多載波分碼多工載波間干擾信號偵測
外文關鍵詞: frequency offset, MC-CDMA, intercarrier interference, signal detection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多載波分碼多工 (MC-CDMA) 是一種結合分碼多工 (CDMA)與正交分頻多工 (OFDM) 之傳輸技術,它已被視為第四代無線行動通訊系統設計上的一項重要技術。此系統雖然同時具有CDMA與OFDM的優點,但也同時存在有此兩種傳輸技術的問題。在MC-CDMA系統中,載波間干擾 (ICI) 是影響系統效能的重要因素;這是由於載波頻率間隔 (subcarrier spacing) 窄以及允許頻譜重疊,使得載波間的正交特性 (orthogonality) 易受傳送、接收兩端震盪器不匹配及都卜勒 (Doppler) 效應所破壞的緣故。
    在此篇研究中,我們提出了一具有自動消除載波間干擾的新型展頻碼,因而不需透過頻率偏移補償或頻域等化器 (FEQ)等,即可大幅降低載波間干擾。另外,我們將所提出的展頻碼結合Alomouti的空時碼建構出一多輸入多輸出的MC-CDMA系統,更進一步地提升系統的效能。為了驗證系統效能,我們提供了載波能量對干擾能量比(CIR)以及位元錯誤率 (BER) 的電腦模擬結果,兩者都顯示了我們所提出的新型展頻碼能更有效的壓抑載波間干擾。此外,我們也模擬了在下鏈傳輸環境下,使用多種信號偵測技術的模擬結果,由模擬結果可以發現,在存在有頻率偏移的環境下,由於我們所提出的展頻碼具有消除載波間干擾的特性,因而可以獲得較高的載波能量對干擾能量比(CIR)以及達到較低的位元錯誤率 (BER),顯示我們所提出的展頻碼可以在不增加系統複雜度的情況下大幅度地提升系統效能。


    Multicarrier code division multiple access (MC-CDMA) is a multiple access scheme that combines CDMA and orthogonal frequency division multiplexing (OFDM) techniques. One major problem associated with MC-CDMA is that the intercarrier interference (ICI) caused by the frequency offset may significantly degrade the system performance. In this thesis, we propose a new spreading code which has ICI self-cancellation capability for MC-CDMA systems. Besides, we also construct a multiple-antenna MC-CDMA system in which the proposed spreading code and Alamouti’s space time block code are both utilized. In downlink transmission, several detection techniques simulation result shows that the proposed spreading code can achieve high CIR and well BER performance and offer excellent immunity to interference.

    Abstract i Contents ii List of Figures iv Chapter 1 1 Introduction 1 Chapter 2 3 MC-CDMA Basics 3 2.1 System Overview 3 2.2 Orthogonal Frequency Division Multiplexing (OFDM) 4 2.3 Code-Division Multiple Access (CDMA) 5 2.4 OFDM-CDMA Systems 5 Chapter 3 12 Detection Techniques in Downlink 12 3.1 Basic Equalization Techniques for Single User Detection 12 3.1.1 System Model 12 3.1.2 Maximal Ration Combining (MRC) 15 3.1.3 Equal Gain Combining (EGC) 16 3.1.4 Orthogonal Restoring Combining (ORC) 16 3.2 Advanced Equalization Techniques for Single User Detection 17 3.2.1 Minimum Mean Square Error Equalizer (MMSEE) 17 Chapter 4 20 MC-CDMA Combined with Space Time Block Coding 20 4.1 Space Time Coding 20 4.1.1 Maximum-Ratio Receiver Combining (MRRC) 20 4.1.2 Space Time Block Coding (STBC) 21 4.2 Space Time Block Coding Combined with OFDM 23 4.3 Downlink MC-CDMA System Using STBC 25 4.3.1 System Model 25 4.3.2 Signal Detection Using Maximal Ration Combining 28 4.3.3 Signal Detection Using Equal Gain Combining 28 4.3.4 Signal Detection Using Orthogonality Restoring Combining 29 4.3.5 Signal Detection Using Minimum Mean Square Error combining 31 Chapter 5 35 MAI and ICI of Synchronous Downlink MC-CDMA with Frequency Offset 35 5.1 ICI Self-Cancellation Scheme 36 5.1.1 Conventional ICI Self-Cancellation Scheme 36 5.1.2 ICI Compression by Using Correlative Coding 37 5.1.3 ICI Compression by Using Huang’s Improved Correlative Coding 37 5.2 MC-CDMA System with Frequency Offset 38 5.2.1 Downlink MC-CDMA System model 38 5.2.2 Multiuser Interference and Intercarrier Interference Analysis 39 5.3 The Proposed Spreading Code for ICI Suppression Scheme 41 5.3.1 Maximal Length Shift Register Sequence 42 5.3.2 Proposed Spreading Code Constructed by m sequence 43 5.4 Simulation Result 46 5.4.1 Simulation with Low System Load 47 5.4.2 Simulation with High System Load 48 Chapter 6 58 Conclusion 58 References 59

    [1] H. Atarashi and M. Sawahashi, “Investigation of inter-carrier interference due to Doppler spread in OFDM broadband packet wireless access”, IEICE Trans. Commun., Vol. E85-B, No. 12, pp. 2684-2693, Jan. 2004.
    [2] H. Harada and Y. Kamio, “A feasibility study of the 16QAM-OFDM transmission scheme for multimedia mobile access communication systems”, IEICE Trans. Commun., Vol. E84-B, No. 8, pp. 2207-2218, Aug. 2001.
    [3] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., pp. 126-133, Dec. 1997.
    [4] H. Atarashi, S. Abeta and M. Sawahashi, “Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing for Broadband Packet Wireless Access”, IEICE Trans. Commun., Vol. E86-B, No.1, pp. 291-299, Jan. 2003.
    [5] S. M. Alamouti, “A simple transmit diversity technique for wireless Communication,” IEEE J. Select. Areas Commun., Vol. 16, pp. 1451-1458, Oct. 1998 .
    [6] N. Yee, J. P. Linnartz, and G. Fettweis, "Multicarrier CDMA in indoor wireless radio networks," in Proc. 1993 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ’93), pp. 109-113, Sept. 1993.
    [7] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston/London: Artech House, 1999.
    [8] J. G. Proakis, Digital Communications. Mc-Graw Hill International Editions, 3rd ed., 1995.
    [9] Y. Zhao and S.-G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems”, IEEE Trans. Commun. vol. 49, Issue 7, pp.1185-1191, July 2001 .
    [10] Y. Zhao, J.-D. Leclercq and S.-G. Haggman, “Intercarrier interference compression in OFDM communication systems by using correlative coding” IEEE Commun. Lett. , vol. 2, Issue 8, pp. 214-216, Aug. 1998.
    [11] Y. Zhao, “In-band and out-band spectrum analysis of OFDM communication systems using ICI cancellation methods” Communication Technology Proceedings, 2000. WCC - ICCT 2000. International Conference, vol. 1, Aug. 2000, pp. 773-776.
    [12] Yu-Chih Huang, An Intercarrier Interference Suppression Technique Using Time-Domain Windowing for OFDM Systems.MS Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2005.
    [13] R. L. Peterson, R. E.Ziemer, and D. E. Borth, Introduction to Spread Spectrum Communication, Prentice Hall ,1995.
    [14] IEEE, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001).
    [15] J. Armstrong, P. M. Grant, and G. Povey, “Polynomial cancellation coding of OFDM to reduce intercarrier interference due to Doppler spread”, in Proc. 1998 IEEE Global Telecommun. Conf. (GLOBECOM ‘98), vol. 5, Nov. 1998, pp. 2771-2776.
    [16] J. Jang and K. B. Lee, “Effects of frequency offset on MC/CDMAsystem performance,” IEEE Commun. Lett., vol. 3, pp. 196–198, July 1999.
    [17] L. Liu, P. Zhang, H.Hamaguchi and H. Wakana, “Impact of frequency offset on the spreading and despreading in broadband MC-CDMA systems”, in Proc. 2004 IEEE Veh. Technol. Conf. (VTC 2004), Vol. 1, Sept. 2004, pp. 699- 703.
    [18] Y. Kim, S. Choi, C. You, and D. Hong, “BER computation of an MC-CDMA system with carrier frequency offset,” IEEE ICASSP ’99, vol. 5, Mar. 1999, pp. 2555-2558.
    [19] X. Cai and A. N. Akansu, "Multicarrier CDMA systems with transmit diversity", in Proc. 2000 IEEE Veh. Technal. Conf. (VTC), vol. 6, Oct. 2000, pp. 2817-2821.
    [20] Y. Li, C. N. Georghiades, and G. Huang, “Performance of downlink multicarrier CDMA with space diversity,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2000), Nov./Dec. 2000, pp. 887–889.
    [21] L. Tomba and W. A. Krzymien, “Sensitivity of the MC-CDMA access scheme to carrier phase noise and frequency offset,” IEEE Trans. on Vehicular Tech., vol. 48, no. 5, pp. 1657–1665, Sep. 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE