研究生: |
曾郁程 Tseng, Yu-Cheng |
---|---|
論文名稱: |
以光彈法結合光譜儀建立應力判斷公式 Establishing Stress Calculation Formula by Intergrating the Photoelastic Method and Spectrometer |
指導教授: |
王偉中
Wang, Wei-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 薄膜電晶體液晶顯示器 、玻璃基板 、光譜儀 、光彈法 、殘餘應力 、相位移光彈法 、應力光學係數 、材料條紋值 、應力判斷公式 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著薄膜電晶體液晶顯示器(Thin Film Transistor-Liquid Crystal Display, TFT-LCD)逐漸往大尺寸化及輕薄化的趨勢發展,顯示器中玻璃基板對顯示器整體的重量和厚度有極大的影響。顯示器中常用的薄型玻璃基板,經過成型的步驟,不可避免的將於玻璃基板內部產生殘餘應力,殘餘應力的大小將決定玻璃基板翹曲的程度,進而影響顯示器的成像品質。玻璃基板的輕薄化使得玻璃材料原本的雙折射性降低,因而玻璃基板內殘餘應力不易以傳統的光彈法量測。本研究結合光譜儀及光彈法針對量化玻璃基板內殘餘應力的可行性進行探討,但由於薄型玻璃基板不易夾持,因此先觀察PSM-1光彈材料試片在拉伸過程之光譜變化趨勢,並使用不同單色光為檢測光源及三步相位移光彈法嘗試分析光譜圖隨應力的變化趨勢,以觀察應力光學係數和材料條紋值的變化狀態。另一方面,使用單色光及白光為檢測PSM-1光彈材料之光源,以建立應力判斷公式,將此公式與實驗值相比較,證實判斷公式的準確性,未來可提供量化玻璃基板內殘餘應力的重要參考。
[1] Website : www.auo.com
[2] G. H. Kim, W. J. Kim, S. M. Kim and J. G. Son, “Analysis of Thermo-Physical and Optical Properties of a Diffuser Using PET/PC/PBT Copolymer in LCD Backlight Units”, Display, Vol. 26, pp. 37-43, 2005.
[3] A. S. Voloshin and C. P. Burger, “Half-fringe Photoelasticity: A New Approach to Whole-field Stress Analysis”, Experimental Mechanics, Vol. 23, pp. 304-313, 1983.
[4] A. Asundi, “Phase Shifting in Photoelasticity”, Experimental Techniques, Vol. 17, pp. 19-23,1993.
[5] A. Ajovalasit, S. Barone, G. Petrucci, “Towards RGB Photoelasticity: Full-field Automated Photoelasticity in White Light”, Experimental Mechanics, Vol. 35, pp. 193-200, 1995.
[6] A. S. Redner, “Photoelastie Measurements by Means of Computer Assisted Spectral Contents Analysis”, Experimental Mechanics, Vol. 25, pp. 148-153, 1985.
[7] A. S. Redner, “Photoelastic Measurements of Residual Stress for NDE”, Proc. SPIE, Vol. 814, Photomechanics and Speckle Metrology, pp. 16-19, San Diego, CA, U.S.A., 1984.
[8] R. J. Sanford and V. Lyengar, “The Measurement of the Complete Photoelastic Fringe Order Using a Spectral Scanner”, Proc. SEM Spring Conf. on Experimental Mechanics, pp. 160-168, Las Vegas, U. S. A., 1985.
[9] R. J. Sanford, “On the Range of Accuracy of Spectra by Scanned White Light Photoelasticity”, Proc. SEM Conf. on Experimental
Mechanics, pp. 901-908, New Orleans, U. S. A., 1986.
[10] A. S. Voloshin and A. S. Redner, “Automated Measurement of Birefringence: Development and Experimental Evaluation of the Techniques”, Experimental Mechanics, Vol. 29, pp. 252-257, 1982.
[11] H. Marwitz, W. Kizler and X. Schuster, “Improved Efficiency in Photoelastic Coatings. Fast Detection of Fringe Order Using Computer Controlled Spectrometry”, Proc. 9th Int. Conf. on Experimental Mechanics, Vol. 2, pp. 828-838, Copenhagen, Denmark, 1990.
[12] L. Ivanova and G. Nechev, “A Method for Investigation of the Residual Stress in Glasses with Spectral Polariscope”, Proc. 9th Int. Conf. on Experimental Mechanics, Vol. 2, pp. 876-883, Copenhagen, Denmark, 1990.
[13] S. J. Haake and E. A. Patterson, “Photoelastic Analysis of Frozen Stressed Specimens Using Spectral-content Analysis”, Experimental Mechanics, Vol. 32, pp. 266-272, 1992.
[14] K. Ramesh and S. Deshmukh, “Three Fringe Photoelasticity – Use of Colour Image Processing Hardware to Automate Ordering of Isochromatics”, Strain, Vol. 32, pp. 79-86, 1996.
[15] P. L. Mason, “Method and Apparatus for Measuring Retardation and Birefringence”, United States Patent, Patent No : US 5,825,492 A, Oct. 20, 1998.
[16] B. L. Wang, C. O. Theodore and P. Kadlec, “Industrial Applications of a High-Sensitivity Linear Birefringence Measurement System”, Proc. SPIE, Vol. 3754, pp. 197-203, Monterey, CA, U. S. A., 1999.
[17] B. Wang, T. C. Oakberg and P. Kadlec, United States Patent, Patent No : US 6,697,157 B2, Feb. 24, 2004.
[18] Website : www.hindsinstruments.com
[19] S. Yoneyama, Y. Morimoto and R. Matsui, “Photoelastic Fringe Pattern Analysis by Real-Time Phase-Shifting Method”, Optics and Lasers in Engineering, Vol. 39, Issue 1, pp.1-13, 2003.
[20] J. M. Cohen, R. G. Greene, D.S. Strope and A. Kaplan, “Impact of Birefringence on Large LCDs”, SID Symposium Digest of Technical Papers, Vol. 33, pp. 329-331, 2002.
[21] A. Ajovalasit, G. Petrucci, M. Scafidi, “Phase Shifting Photoelasticity in White Light”, Optics and Lasers in Engineering, Vol. 45, Issue 5, pp.596-611, 2007.
[22] K. Ramesh, “Digital Photoelasticity : Advanced Techniques and Applications”, Springer Co., Berlin, German, 2000.
[23] 趙清澄主編, “光測力學教程”, 第23頁, 高等教育出版社, 北京,
民國84年.
[24] Website : www.andruss-peskin.com/mg/vmlinks.html
[25] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)”, Annual Book of ASTM Standards, Vol. 02.02, pp. 578-594, Philadelphia, 1984.
[26] Website : www.sharplesstress.com
[27] Website : www.hmtech.com.tw
[28] Website : www.zolix.com.cn
[29] Website : www.optosigma.com
[30] 吳政邦, “含一近表面裂縫半無窮平板之應力分析”, 國立清華大學動力機械工程學系碩士論文, 2005.
[31] Website : www. ikont.co.jp
[32] Website : www. futek.com
[33] 劉柏彣, “構件在高頻諧和力作用下之數位光黏彈探討”, 國立清華大學動力機械工程學系碩士論文, 2008.
[34] 曹鈞勝, “黏彈材料受高頻諧和力作用之數位光彈應力分析”, 國立清華大學動力機械工程學系碩士論文, 2009.
[35] 陳維仁, “光彈法結合光譜儀之應力分析”, 國立清華大學動力機械工程學系碩士論文, 2009.
[36] Origin, Version 7.0, Original Lab Co., Massachusetts, U. S. A., 2002.