簡易檢索 / 詳目顯示

研究生: 楊毅杰
Ichieh Yang
論文名稱: 磁致動微機電系統顯示元件
Magnetic Actuating MEMS Display Device
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 103
中文關鍵詞: 微機電系統磁致動紫外光微電鑄微鏡面
外文關鍵詞: MEMS, Magnetic Actuation, UV-LIGA, Micromirror
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了磁致動微機電系統顯示元件的設計概念,並完成其製造以及測試。
    此元件為以鎳材質之微鏡面結構群形成的陣列所組成,利用磁感應的方式使微鏡面產生扭轉,藉由其角度的變化來將入射光線做適當的反射,當微鏡面結構之扭轉剛性互有不同時,在相同的磁場感應受力之下,微鏡面彼此間轉動的角度便有所不同,因此在適當的磁場感應下,便能使得相同轉動角度的微鏡面同時將光線反射,再將其透過預先的排列之後,便能顯示出特定的圖形。
    本文設計的元件採用UV-LIGA的製程方式來製造,並透過電鑄不同材料的金屬分別做為犧牲層與結構層,將其相互做堆疊後,再將犧牲層蝕刻去除便能使微結構懸浮釋放。本製程不但內容單純,而且使用設備均容易取得,並且能夠製造出一定程度的深寬比結構,同時還能控制其結構的內應力,與其它高深寬比製程相較下,其成本上佔有相當大的優勢,除此之外,本製程屬於低溫製程,因此還能夠易於與其它製程作整合。


    目錄 i 圖目錄 iii 表目錄 vii 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 8 1-3 研究動機與目標 15 第2章 原理與設計 25 2-1 磁致動機制 25 2-2 顯示原理 27 2-3 微鏡面結構設計與分析 29 2-3.1 撓性結構 29 2-3.2 鏡面結構 30 2-4 系統整合 33 第3章 製程與實驗 42 3-1 UV-LIGA 42 3-2 製程測試與結果 43 3-3 微鏡面結構製程與結果 46 3-4 製程問題與改善 48 3-4.1 光阻模仁 49 3-4.2 電鑄起始層 51 3-4.3 電鑄效果 53 第4章 量測 64 4-1 微結構之楊氏係數 64 4-2 微鏡面結構原型 65 4-3 微鏡面陣列顯示元件 66 第5章 結論 78 5-1 研究成果 78 5-2 未來工作 79 第6章 參考文獻 80 附錄A 電鑄原理與介紹 89 附錄B 鎳微結構楊氏係數量測之文獻整理表 102

    [1] B. Lochel, A. Maciossek, M. Rothe, and W. Windbracke, “Micro Coils Fabricated By UV Depth Lithography And Galvanoplating,” The 8th international conference on solid-state sensors and actuators, Stockholm, Sweden, June, 1995, pp. 264-267.
    [2] B. Ghodsian, A. Parameswaran, M. Syrzycki, and N. Tait, “Fabrication of affordable metallic microstructures by electroplating and photoresist molds,” Canadian Conference on Electrical and Computer Engineering, Alberta, Canada, May, 1996, 1, pp. 68-71.
    [3] K. Akimoto, Y. Uenishi, K. Honma, and S. Nagaoka, “Evaluation of comb-drive nickel micromirror for fiber optical communication,” IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan., 1997, pp. 66-71.
    [4] A.S. Holmes, and K.W. Lee, “Multilayer electroformed devices on silicon substrates,” IEE Seminar on Demonstrated Micromachining Technologies for Industry, Birmingham, AL, March, 2000, pp. 5/1-5/4.
    [5] K. Kataoka, T. Itoh, T. Suga, and K. Inoue, “Contact properties of Ni micro-springs for MEMS probe card,” Electrical Contacts, 2004. pp. 231-235.
    [6] K. Kataoka, S. Kawamura, T. Itoh, K. Ishikawa, H. Honma, and T. Suga, “Electroplating Ni micro-cantilevers for low contact-force IC probing,” Sensors and Actuators A, 103, pp. 116-121, 2003.
    [7] W. Qu, C. Wenzel, and K. Drescher, “Fabrication of low-cost capacitive accelerometers by 3D microforming,” Optoelectronic and Microelectronic Materials And Devices Proceedings, Dec., 1996, pp. 462-465.
    [8] W. Qu, “3D UV-microforming: principles and applications,” Engineering Science and Education Journal, 8, pp. 13-19, 1999.
    [9] Y. Konaka, and M.G. Allen, “Single- and multi-layer electroplated microaccelerometers,” IEEE, The Ninth Annual International Workshop on Micro Electro Mechanical Systems, Feb., 1996, pp. 168-173.
    [10] T. Iizuka, T. Oba, and H. Fujita, “Electrostatic micro actuators with high-aspect-ratio driving gap for hard disk drive application,” Proceedings of International Symposium on Micromechatronics and Human Science, Oct., 2000, pp. 229-236.
    [11] J.-W. Park, F. Cros, and M. G. Allen, “A sacrificial approach to highly laminated magnetic cores,” Proc. IEEE/ASME Microelectromechanical Systems Conf., Las Vegas, NV, 2002, pp. 380–383.
    [12] K. Shingo, K. Kataoka, T. Itoh, and T. Suga, “Design and fabrication of an electrostatically actuated MEMS probe card,” TRANSDUCERS 2003, 2, June, 2003, pp. 1522-1525.
    [13] J.-W. Park, F. Cros, and M. G. Allen, “Planar spiral inductors with multilayer micrometer-scale laminated cores for compact-packaging power converter applications,” IEEE Transactions on Magnetics, 40, 4, July, 2004, pp. 2020-2022.
    [14] C. Kruger, W. Mokwa, and U. Schnakenberg, “NiW-micro springs for chip connection,” IEEE International Conference on Micro Electro Mechanical Systems, 2004, pp. 117-120.
    [15] Z. Li, and N.C. Tien, “Low-Cost Electroplated Vertical Comb-Drive,” Proceedings of the Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head, SC, 2004, pp. 220-223.
    [16] J.-B. Yoon, C.-H. Han, E. Yoon, and C.-K. Kim, “Monolithic Integration of 3-D Electroplated Microstructures of Unlimited Number of Levels Using Planarization with a Sacrificial Metallic Mold (PSMM),” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 1999, pp. 624-629.
    [17] A. Cohen, G. Zhang, F.-G. Tseng, U. Frodis, F. Mansfeld, and P. Will, “EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS,” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 1999, pp. 244-251.
    [18] http://www.microfabrica.com/efabaccess
    [19] Y.-J. Kim, and M.G. Allen, “Surface micromachined solenoid inductors for high frequency applications,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, 21, pp. 26-33, 1998.
    [20] R.J. Rassel, C.F. Hiatt, J. DeCramer, and S.A. Campbell, “Fabrication and characterization of a solenoid-type microtransformer,” IEEE Transactions on Magnetics, 39, pp. 553-558, 2003.
    [21] H. Emmerich, M. Schofthaler, and U. Knauss, “A novel micromachined magnetic-field sensor,” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 1999, pp. 94-99.
    [22] H. Emmerich, and M. Schofthaler, “Magnetic field measurements with a novel surface micromachined magnetic-field sensor,” IEEE Transactions on Electron Devices, 47, pp. 972-977, 2000.
    [23] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet, “Micromachined CMOS magnetic field sensors with low-noise signal conditioning,” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 2002, pp. 256-259.
    [24] F. Keplinger, S. Kvasnica, and H. Hauser, “Measuring high magnetic fields with a U-shaped micro machined cantilever using an optical readout,” Magnetics Conference, March, 2003, pp. CQ-08.
    [25] T.C. Leichle, M. von Arx, and M.G. Allen, “A micromachined resonant magnetic field sensor, ” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 2001, pp. 274-277.
    [26] D.J. Vasquez, J.W. Judy, “Zero-power magnetometers with remote optical interrogation,” IEEE International Conference on Micro Electro Mechanical Systems, 2004, pp. 109-112.
    [27] J.W. Judy, R.S. Muller, and H.H. Zappe, “Magnetic microactuation of polysilicon flexure structures,” Journal of Microelectromechanical Systems, 4, pp. 162-169, 1995.
    [28] J.W. Judy, and R.S. Muller, “Magnetic Microactuation Of Torsional Polysilicon Structures,” International Conference on Solid-State Sensors and Actuators, 1, June, 1995, pp. 332-335.
    [29] C. Liu; T. Tsao, Y.-C. Tai, W. Liu, P. Will, and C.-M. Ho, “A Micromachined Permalloy Magnetic Actuator Array for Micro Robotics Assembly Systems,” International Conference on Solid-State Sensors and Actuators, 1, June, 1995, pp. 328-331.
    [30] C. Liu, and Y.W. Yi, “Micromachined magnetic actuators using electroplated Permalloy, Magnetics,” IEEE Transactions on Magnetics, 35, pp. 1976-1985, 1999.
    [31] Y. Yi, and C. Liu “High-Yield Assembly of Hinged 3D Optical MEMS Devices Using Magnetic Actuation,” SPIE’s Micromachining and Microfabrication, Santa Clara, CA, Sep., 1998.
    [32] Y.W. Yi, and C. Liu, “Magnetic actuation of hinged microstructures,” Journal of Microelectromechanical Systems, 8, pp. 10-17, 1999.
    [33] Y.W. Yi, and C. Liu, “Assembly of micro-optical devices using magnetic actuation,” Sensors and Actuators A, A78, pp. 205-211, 1999.
    [34] M. Khoo, and C. Liu, “A novel micromachined magnetic membrane microfluid pump,” IEEE Engineering in Medicine and Biology Society, 3, July, 2000, pp. 2394-2397.
    [35] M. Khoo, and C. Liu, “Micro Magnetic Silicone Elastomer Membrane Actuator” Sensors and Actuators A, 89, pp. 259-266, 2001.
    [36] L.-H. Lu, K.-S. Ryu, and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, 11, pp. 462-469, 2002.
    [37] K.-S. Ryu, K. Shaikh, E. Goluch, Z.-F. Fan, and C. Liu, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab on a Chip, pp. 608-613, 2004.
    [38] R.A. Miller, Y.-C. Tai, G. Xu, J. Bartha, and F. Lin, “An electromagnetic MEMS 2×2 fiber optic bypass switch,” International Conference on Solid State Sensors and Actuators, Chicago, June, 1997, 1, pp. 89-92.
    [39] M.-C. Cheng, W.-S. Huang, and S.R.S. Huang, “A silicon microspeaker for hearing instruments,” Journal of Micromechanics and Microengineering, 14, pp. 859-866, 2004.
    [40] J.J. ernstein, W.P. Taylor, J.D. Brazzle, C.J. Corcoran, G. Kirkos, J.E. Odhner, A. Pareek, M. Waelti, and M. Zai, “Electromagnetically actuated mirror arrays for use in 3-D optical switching applications,” Journal of Microelectromechanical Systems, 13, pp. 526-535, 2004.
    [41] J.W. Judy, and R.S. Muller, “Magnetically actuated, addressable microstructures,” Journal of Microelectromechanical Systems, 6, pp. 249-256, 1997.
    [42] C.-H. Ji, and Y.-K. Kim, “Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring,” Journal of Lightwave Technology, 21, pp. 584-590, 2003.
    [43] C.H. Ahn, and M.G. Allen, “A fully integrated micromagnetic actuator with a multilevel meander magnetic core,” Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, June, 1992, pp. 14-18.
    [44] J.A. Wright, Y.-C. Tai, and S.-C. Chang, “A large-force, fully-integrated MEMS magnetic actuator,” International Conference on Solid State Sensors and Actuators, Chicago, June, 1997, 2, pp. 793-796.
    [45] D.J. Sadler, T.M. Liakapoulos, and C.H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” Journal of Microelectromechanical Systems, 9, pp. 460-468, 2000.
    [46] W.-J. Li, X.-L. Zhao, B.-C. Cai, G.-Y. Zhou, M.-S. Z, and X.-H. Dai, “Design and fabrication of micromechanical variable fiber-optic attenuator,” International Conference on Solid-State and Integrated-Circuit Technology, Oct., 2001, 2, pp. 749-752.
    [47] L. Houlet, G. Reyne, T. Iizuka, T. Bourouina, and H. Fujita, “Magnetic actuator for optical switch,” Micro Electro Mechanical Systems, 2001.
    [48] O. Cugat, P. Mounaix, S. Basrour, C. Divoux, and G. Reyne, “Deformable magnetic mirror for adaptive optics: first results,” International Conference on Micro Electro Mechanical Systems, Jan., 2000, pp. 485-490.
    [49] O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sensors and Actuators A: Physical, 89, pp. 1-9, 2001.
    [50] S.-W. Chung, J.-W. Shin, Y.-K. Kim, H.-S. Kim, E. Lee, B.-K. Choi, and S.-J. Ahn, “Characteristics measurements of the 100×110 um2 fabricated micro mirror,” Advanced Applications of Lasers in Materials Processing, Aug., 1996, pp. 3-4.
    [51] M. Urano, H. Ishii, Y. Tanabe, T. Shimamura, T. Sakata, T. Kamei, K. Kudou, M. Yano, and K. Machida, “Novel fabrication process and structure of a low-voltage-operation micromirror array for optical MEMS switches,” Technical Digest, IEEE International Electron Devices Meeting, Dec., 2003, pp. 39.5.1-39.5.4.
    [52] J.-W. Jeon, B.-I. Kim, J.-H. Kim, H.-K. Lee, J.-B. Yoon, E. Yoon, and K.-S. Lim, “Electrostatic digital micromirror using interdigitated cantilevers,” IEEE International Conference on Micro Electro Mechanical Systems, Jan., 2002, pp. 528-531.
    [53] J.H. Kim, H.K. Lee, B.I. Kim, J.W. Jeon, J.W. Yoon, and E. Yoon, “A high fill-factor micro-mirror stacked on a crossbar torsion spring for electrostatically-actuated two-axis operation in large-scale optical switch,” IEEE International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003, pp. 259-262.
    [54] J.A. Osborn, “Demagnetizing factors of general ellipsoid,” phys. Rev., 67, 1945, pp. 351-357.
    [55] 巫啟宏, “Ni/SiC奈米粒子複合電鑄運用於類LIGA之微結構成型,” 國立中正大學碩士論文, 2004.
    [56] 林西音, 金屬電鍍學. 初版, 台灣台北, 五洲出版, 1971.
    [57] 蘇癸陽, 張良謙, 實用電鍍理論與實際, 修訂四版, 台灣台南, 復文出版, 1986.
    [58] http://www.shccl.com.tw
    [59] L.T. Romankiw, “A path: from electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochimica. Acta., 42, pp. 2985-3005, 1997.
    [60] R. Kiumi, J. Yoshioka, F. Kuriyama, N. Saito, and M. Shimoyama, “Processing, properties, and reliability of electroplated lead-free solder bumps,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, May, 2002, pp. 909-914.
    [61] J.-M. Lee; J.T. Hachman Jr., J.J. Kelly, and A.C. West, “Improvement of current distribution uniformity on substrate for microelectromechanical systems,” J. Microlith., Microfab., Microsyst., 3, pp. 146-151, 2004.
    [62] T. Matsuda, T. Morita, H. Kaneko, N. Hayasaka, K. Okumura, K. Mishima, N. Makino, J. Kunisawa, and M. Tsujimura, “Electroplating performance enhancement by controlling resistivity of electrolyte with porous materials for advanced Cu metallization,” Proceedings of the IEEE Interconnect Technology Conference, June, 2001, pp. 283-285.
    [63] J.H. Glezen, H.A. Naseem, R.K. Ulrich, L.W. Schaper, and W.D. Brown, “Uniform copper electroplating for application to multichip modules,” International Conference on Multichip Modules, April, 1997, pp. 218-223.
    [64] S. Gandikota, A. Duboust, S. Neo, L.-Y. Chen, R. Cheung, and D. Carl, “Extension of copper plating to 0.13 μm nodes by pulse-modulated plating,” Proceedings of the IEEE Interconnect Technology Conference, June, 2000, pp. 239-241.
    [65] K. Kikuchi, M. Takamiya, Y. Kudoh, K. Soejima, H. Honda, M. Mizuno, and S. Yamamichi, “A package-process-oriented multilevel 5-/spl mu/m-thick Cu wiring technology with pulse periodic reverse electroplating and photosensitive resin,” Proceedings of the IEEE Interconnect Technology Conference, June, 2003, pp. 189-191.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE