研究生: |
黃晉修 Huang, Chin-Hsiu |
---|---|
論文名稱: |
以多層介電質閘堆疊改善鰭式電晶體之電特性研究 Improved Electrical Characteristics of FinFETs by Multilayer Dielectric Gate Stacks |
指導教授: |
張廖貴術
ChangLiao, Kuei-Shu |
口試委員: |
趙天生
Chao, Tien-Sheng 李耀仁 Lee, Yao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 介電質 、鰭式電晶體 、閘堆疊 |
外文關鍵詞: | High-k, FinFET, Gate Stacks |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在等效氧化層厚度的微縮需求下,二氧化鉿的k值逐漸無法滿足現今MOSFET微縮趨勢,相對於使用單層二氧化鉿介電層,使用較高k值的介電層堆疊有較好的電特性,然而,如果使用更高k值的介電材料會造成載子遷移率下降的問題,這是使用更高k值的介電材料所帶來的挑戰。介面層與介電層之介面會因介電材料而受影響,有些介電材料可能會與介面層反應產生介電常數較小的矽化物,使得等效氧化層厚度提升,以及劣化介面品質,讓閘極漏電流增加。此外,介電層與金屬閘極之介面影響也是很重要,可能會因介電層所產生的氧空缺還有介面偶極的改變,而導致臨界電壓偏移以及可靠度的問題,因此多層介電層堆疊結構鰭式電晶體將在此論文中提出。
第一部分,在原子層沉積系統(ALD)機台以不同條件的control (HfO2)、兩層結構Bilayer (ZrO2/HfO2)、Hf-rich trilayer以及Zr-rich trilayer (HfO2/ZrO2/HfO2)介電層堆疊,藉提高介電層之介電系數,達到抑制等效氧化層厚度的效果,而底層的HfO2介電層堆疊可以避免二氧化鋯穿隧,並透過不同的結構堆疊,觀察介電層對金屬閘極之介面電性差異。實驗結果可以發現,Zr-rich trilayer結構之EOT達到了6.9 Å,而且透過ZrO2較高的k值,可以提升汲極電流。另外,我們也發現三層結構堆疊有較優的Stress induced threshold voltage shift。
第二部分,延續上一部分的結果,利用二氧化鈦更高的k值,希望可以得到更薄的EOT,且提升可靠度,並比較介電層對金屬閘極之介面影響。由實驗結果可以得知含有TiO2的閘極介電層堆疊元件有較好的可靠度,以及大幅提升汲極電流。而三層結構可以改善閘極漏電流、可靠度以及高電場下載子遷移率衰退的缺點。
As equivalent oxide thickness (EOT) scaled down, the k-value of HfO2 is not high enough to continue the downscaling of advanced MOSFETs. Compared to single HfO2 dielectric, the stacked gate dielectric with higher dielectric constant (k-value) exhibits superior performance. However, the carrier mobility degradation may be caused by higher k-value dielectric material. This is the challenge caused by using higher k-value gate dielectric. The interface between interfacial layer and high-k dielectric is influenced by dielectric materials. The interface between interfacial layer and high-k dielectric is influenced by dielectric materials. A lower k-value of silicide may be easily formed at interfacial layer and high-k interface, which may induce the increases of EOT and Jg. On the other hand, the interface between gate electrode and high-k dielectric is also very important due to the generation of oxygen vacancy and the change of interface dipole, which may induce threshold voltage shifts and some reliability problem. Therefore, a novel multilayer dielectric gate stack is proposed on FinFET in this thesis
In the first part, gate dielectrics with control (HfO2), bilayer (ZrO2/HfO2), Hf-rich trilayer and Zr-rich trilayer (HfO2/ZrO2/HfO2) are in-situ deposited in atomic layer deposition (ALD), respectively. ZrO2 with a higher k-value was used to reduce the EOT. ZrO2 diffusion can be suppressed by a bottom layer of HfO2. Effects of interface between gate dielectric and metal gate on electrical characteristics of FinFET are studied by different stacked gate dielectric. Results show that the EOT of device with Zr-rich trilayer stack is scaled down to 6.9 Å. The drain current is improved by Zr-containing gate stacks due to its higher k-value. Furthermore, the stress induced threshold voltage shifts are lower for sample with trilayer stacked gate dielectric.
In the second part, HfO2 and TiO2 stack are proposed as gate dielectric to reduce EOT and improve reliability of FinFET. The better reliability and higher on current are achieved by bilayer and trilayer gate dielectric. In addition, the reduced gate leakage current, better reliability and the improvement of mobility degradation at high electric field are obtained for FinFET with trilayer stack.
[1] M. Agostinelli, M. Alioto, D. Esseni, and L. Selmi, “Leakage-Delay Tradeoff in FinFET Logic Circuits: A Comparative Analysis With Bulk Technology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2. pp. 232–245, 2010.
[2] D. K. Schroder, Semiconductor Material and Device Characterization: Third Edition. 2005.
[3] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217). pp. 167–170, 1998.
[4] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, vol. 25, no. 11. 2002.
[5] H. S. P. Wong, “Beyond the conventional transistor,” IBM Journal of Research and Development, vol. 46, no. 2.3. pp. 133–168, 2002.
[6] M. Houssa et al., “Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions,” Mater. Sci. Eng. R Reports, vol. 51, no. 4, pp. 37–85, 2006.
[7] H. Sasaki et al., “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Transactions on Electron Devices, vol. 43, no. 8. pp. 1233–1242, 1996.
[8] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, “Unified mobility model for high-k gate stacks,” IEEE International Electron Devices Meeting 2003. p. 33.3.1-33.3.4, 2003.
[9] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47, no. 3, pp. 322–324, 1985.
[10] C. R. Manoj, M. Nagpal, D. Varghese, and V. R. Rao, “Device Design and Optimization Considerations for Bulk FinFETs,” IEEE Transactions on Electron Devices, vol. 55, no. 2. pp. 609–615, 2008.
[11] B. Parvais et al., “The device architecture dilemma for CMOS technologies: Opportunities & challenges of finFET over planar MOSFET,” 2009 International Symposium on VLSI Technology, Systems, and Applications. pp. 80–81, 2009.
[12] N. K. Jha and D. Chen, Nanoelectronic circuit design. 2011.
[13] C. Y. Kang et al., “Effects of ALD TiN Metal Gate Thickness on Metal Gate /High-k Dielectric SOI FinFET Characteristics,” 2006 IEEE international SOI Conferencee Proceedings. pp. 135–136, 2006.
[14] T. Hayashida et al., “Fin-Height Effect on Poly-Si/PVD-TiN Stacked-Gate FinFET Performance,” IEEE Transactions on Electron Devices, vol. 59, no. 3. pp. 647–653, 2012.
[15] C. Y. Kang et al., “Effects of Film Stress Modulation Using TiN Metal Gate on Stress Engineering and Its Impact on Device Characteristics in Metal Gate/High-k Dielectric SOI FinFETs,” IEEE Electron Device Letters, vol. 29, no. 5. pp. 487–490, 2008.
[16] M. Yang et al., “High performance CMOS fabricated on hybrid substrate with different crystal orientations,” IEEE International Electron Devices Meeting 2003. p. 18.7.1-18.7.4, 2003.
[17] C. Y. Kang et al., “A Novel Electrode-Induced Strain Engineering for High Performance SOI FinFET utilizing Si (1hannel for Both N and PMOSFETs,” 2006 International Electron Devices Meeting. pp. 1–4, 2006.
[18] G. Vellianitis et al., “The Influence of TiN Thickness and SiO2 Formation Method on the Structural and Electrical Properties of TiN/HfO2/SiO2 Gate stacks,” IEEE Transactions on Electron Devices, vol. 56, no. 7. pp. 1548–1553, 2009.
[19] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G.Lewis, and A.Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Device Letters, vol. 12, no. 4. pp. 181–183, 1991.
[20] N. H. Nickel, P. Mei, and J. B. Boyce, “On the nature of the defect passivation in polycrystalline silicon by hydrogen and oxygen plasma treatments,” IEEE Transactions on Electron Devices, vol. 42, no. 8. pp. 1559–1560, 1995.
[21] D. Kaplan, N. Sol, G. Velasco, and P. A.Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett., vol. 33, no. 5, pp. 440–442, 1978.
[22] C. H. Seager and D. S. Ginley, “Passivation of grain boundaries in polycrystalline silicon,” Appl. Phys. Lett., vol. 34, no. 5, pp. 337–340, 1979.
[23] T. Makino and H. Nakamura, “The influence of plasma annealing on electrical properties of polycrystalline Si,” Appl. Phys. Lett., vol. 35, no. 7, pp. 551–552, 1979.
[24] D. R. Campbell, “Enhanced conductivity in plasma-hydrogenated polysilicon films,” Appl. Phys. Lett., vol. 36, no. 7, pp. 604–606, 1980.
[25] N. Willems, U. Wejinya, and Z. Dong, “Temperature treatment on Silicon Nanowires for reliability studies,” 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013). pp. 321–324, 2013.
[26] A. Fontcuberta i Morral and P. Roca i Cabarrocas, “Etching and hydrogen diffusion mechanisms during a hydrogen plasma treatment of silicon thin films,” J. Non. Cryst. Solids, vol. 299, pp. 196–200, 2002.
[27] H. S. Jung et al., “Impacts of Zr Composition in Hf1-xZrxOy Gate Dielectrics on Their Crystallization Behavior and Bias-Temperature-Instability Characteristics,” IEEE Transactions on Electron Devices, vol. 58, no. 7. pp. 2094–2103, 2011.
[28] M. Gutowski et al., “Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897–1899, 2002.
[29] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E.White, “Hafnium zirconate gate dielectric for advanced gate stack applications,” J. Appl. Phys., vol. 101, no. 7, 2007.
[30] C. K. Chiang et al., “Investigation of the structural and electrical characterization on ZrO2 addition for ALD HfO2 with La2O3 capping layer integrated metal-oxide semiconductor capacitors,” 2011 IEEE/SEMI Adv. Semicond. Manuf. Conf., vol. 2, pp. 1–4, 2011.
[31] N. Lu, H. J. Li, M. Gardner, and D. L. Kwong, “Higher k HfTaTiO gate dielectric with improved material and electrical characteristics,” 63rd Device Research Conference Digest, 2005. DRC ’05., vol. 1. pp. 221–222, 2005.
[32] J. Huang et al., “Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT=0.59nm for 16nm application,” 2009 Symp. VLSI Technol., pp. 34–35, 2009.
[33] C. H. Fu et al., “A low gate leakage current and small equivalent oxide thickness MOSFET with Ti/HfO2 high-k gate dielectric,” Microelectron. Eng., vol. 88, no. 7, pp. 1309–1311, 2011.
[34] H. H. Dielectrics et al., “Hafnium-based High-K Dielectrics,” vol. 78758, no. 512, pp. 122–125.