簡易檢索 / 詳目顯示

研究生: 吳凱庭
Kai-Ting Wu
論文名稱: 金屬鎢奈米點及高介電係數材料於非揮發性記憶體之研究
Study on the Tungsten Nanocrystal and High-k Materials for Nonvolatile Memory
指導教授: 楊士禮
Sidney S. Yang
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 76
中文關鍵詞: 奈米點記憶體高介電係數
外文關鍵詞: tungsten, nanocrystal, memory, high-k
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非揮發性記憶體(NVM)目前在元件尺寸持續微縮下的需求為高密度記憶單元、低功率損耗、快速讀寫操作、以及良好的可靠度(Reliability)。傳統浮動閘極(floating gate)記憶體在操作過程中如果穿隧氧化層產生漏電路徑會造成所有儲存電荷流失回到矽基板,所以在資料保存時間(Retention)和耐操度(Endurance)的考量下,很難去微縮穿隧氧化層的厚度。非揮發性奈米點記憶體被提出希望可取代傳統浮動閘極記憶體,由於奈米點可視為電荷儲存層中彼此分離的儲存點,可以有效改善小尺寸記憶體元件多次操作下的資料儲存能力。近年來發展了許多方法來形成奈米點,一般而言,大多數的方法都需要長時間高溫的熱製程,這個步驟會影響現階段半導體製程中的熱預算和產能。
    在本文中,一個簡單、快速的製程方法用來形成鎢奈米點,並應用於非揮發性記憶體。室溫下,在氬氣和氮氣(Ar/N2) 的環境中濺鍍(sputtering)混合鈀材WSi2 形 成具有鎢-矽-氮三元的薄膜,並使用快速熱退火製程形成氮化矽(SiNx)包覆著鎢奈米點的非揮發性記憶體結構,其中氮氣扮演一個重要的角色,可以簡單並均勻地形成高密度(~1012 cm-2)的奈米點。
    使用快速熱退火製程(RTA)可以增進奈米點的結晶性(crystalline)和記憶體的可靠度,熱處理可以減少奈米點周圍氮化矽中的缺陷(defect)。
    我們應用高介電常數材料做為元件的阻障氧化層(Blocking oxide)預期利用材料的特性來增進奈米點成核數量,並有助於樣品的性能,如資料保存時間、耐操度、寫入速度等等特性。此外,這個應用在非揮性記憶體的製程技術同時也適用於現階段積體電路製程。


    Chinese Abstract..........................................Ⅰ English Abstract..........................................Ⅲ Acknowledgement...........................................Ⅴ Contents..................................................Ⅵ Figure Captions..........................................VII Table Captions............................................Ⅹ Chapter 1 Introduction.....................................1 Chapter 2 Basic Principle of Nonvolatile Memory...........13 Chapter 3 Formation and Memory Effect of Sputtering WSi2 in Oxygen and Nitrogen Ambiance.............................32 Chapter 4 High-k Materials as control oxide layer for Tungsten-Silicide nanocrystal NVM........................50 Chapter 5 Conclusion......................................67 References...............................................68

    Chapter 1

    [1.1] S. Lai, Future Trends of Nonvolatile Memory Technology, December 2001.
    [1.2] S. Aritome, IEEE IEDM Tech. Dig., 2000, p.763.
    [1.3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, vol. 85, pp. 1248–1271, Aug. 1997.
    [1.4] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, vol. 91, NO.4, April 2003.
    [1.5] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288 (1967).
    [1.6] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
    [1.7] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
    [1.8] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits & devices, 16, 22 (2000).
    [1.9] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
    [1.10] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
    [1.11] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
    [1.12] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
    [1.13] H.A.R. Wegener, A.J. Lincoln, H.C. Pao, M.R. O’Connell, and R.E. Oleksiak, The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.
    [1.14] T.Y.Chan, K.K.Young and C.Hu, “A true single-transistor oxide- nitride-oxide EEPROM device”. IEEE Electron Device Letters, vol.8, no.3, pp.93-95, 1987.
    [1.15] M.K. Cho and D.M.Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters, pp.399-401, Vol.21, No.8, 2000.
    [1.16] I. Fijiwara, H.Aozasa, K.Nomoto, S.Tanaka and T.Kobayashi, “ High speed program/erase sub 100nm MONOS memory cell”, Proc. 18th Non-Volatile Semiconductor Memory Workshop, p. 75, 2001.
    [1.17] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech. Dig. ,
    9A-2, 113 (1997).
    [1.18] C. Tung-Sheng, W. Kuo-Hong, C. Hsien, and K. Chi-Hsing, “Performance improvement of SONOS memory by bandgap engineering of charge-trappinglayer”, IEEE Electron Device Lett., vol. 25, no. 3, pp.205–207, Mar. 2004.
    [1.19] Y. N. Tan, W. K. Chim, and B. J. Cho, W. K. Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer”, IEEE Transations on Eelectron Devices, vol.51, no.7, July 2004.
    [1.20] Min She, Hideki Takeuchi, and Tsu-Jae King, “Silicon-Nitride as a Tunnel Dielectric for Improved SONOS-Type Flash Memory”, IEEE Electron Device Letters, vol. 24, no. 5, MAY 2003.
    [1.21] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect”, Applied Physics Letters 87, 073510 (2005)
    [1.22] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, and Ping-Hung Yeh, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels”, Applied Physics Letters 90, 122111 (2007)
    [1.23] Peiqi Xuan, Min She, Bruce Harteneck, Alex Liddle, Jefkey Bokor, and Tsu-Jae King, “FinFET SONOS Flash Memory for Embedded Applications”, IEEE IEDM 609-612 (2003).
    [1.24] Tzu-Hsuan Hsu, Hang Ting Lue, Ya-Chin King, Jung-Yu Hsieh, Erh-Kun Lai, Kuang-Yeu Hsieh, and Chih-Yuan Lu, “A High-Performance Body-Tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-Type Flash Memory”, IEEE Electron Device Letters, vol. 28, no. 5, MAY 2007.
    [1.25] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
    [1.26] J De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002.
    [1.27] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, IEEE Trans. Electron Devices 49, 1392 (2002).
    [1.28] Y. C. King, T. J. King, and C. Hu, IEEE Trans. Electron Devices 48, 696 (2001)
    [1.29] Y. Shi et al., in Proceedings of the First Joint Symposium on Opto- and Microelectronic Devices and Circuits, 2000, pp. 142–145.
    [1.30] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang, Microelectron. J. 34, 71 (2003).
    [1.31] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE Trans. Electron Devices, VOL. 49, NO. 9, SEPTEMBER 2002.
    [1.32] Chungho Lee, Udayan Ganguly, Venkat Narayanan, and Tuo-Hung Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, vol. 26, NO. 12, DECEMBER 2005.
    [1.33] Jong Jin Leea, Yoshinao Harada Jung, Woo Pyun, and Dim-Lee Kwong “Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications”, Applied Physics Letters 86, 103505 (2005)
    [1.34] Wei-Ren Chen, Ting-Chang Chang, Po-Tsun Liu, Po-Sun Lin, Chun-Hao Tu, and Chun-Yen Chang “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application”, Applied Physics Letters 90, 112108 (2007)
    [1.35] S. K. Samanta, Won Jong Yoo, and Ganesh Samudra, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters 87, 113110 (2005)
    [1.36] S. K. Samanta, P. K. Singh, Won Jong Yoo, Ganesh Samudra, and Yee-Chia Yeo, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals”, IEEE (2005)
    [1.37] Shan Tang, Chuanbin Mao, Yueran Liu, and Sanjay K. Banerjee “Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication”, IEEE Trans. on Electron Letters, vol. 54, no. 3, March 2007.
    [1.38] L. Guo, E. Leobandung, and S. Y. Chou, “Si single-electron MOS memory with nanoscale floating-gate and narrow channel,” in Int. Electron Devices Meeting Tech. Dig., 1996, pp. 955–956.
    [1.39] N. Takahashi, H. Ishikuro, and T. Hiramoto, “A directional current switch using silicon electron transistors controlled by charge injection into silicon nano-crystal floating dots,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 371–374.
    [1.40] J. Wahl, H. Silva, A. Gokirmak, A. Kumar, J. J. Welser, and S. Tiwari, “Write, erase and storage times in nanocrystal memories and the role of interface states,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 375–378.
    Chapter 2
    [2.1] Chih-Yuan and Chin-Chieh Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004.
    [2.2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
    [2.3] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.
    [2.4] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika and S. Satoh, “Device characteristics of 0.35 □m P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming”, IEEE Trans. Electron Devices, Vol. 46, pp. 1866-1871, 1999.
    [2.5] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001)
    [2.6] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)
    [2.7] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp Pack and Manu Tech part A., 17, 390 (1994)
    [2.8] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
    [2.9] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of
    Electron Devices., 49, 1606 (2002)
    [2.10] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
    [2.11] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
    [2.12] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973)
    [2.13] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979)
    [2.14] C. Hu, IEDM Tech. Dig., p.22. (1979)
    [2.15] S. Tam, P. K. Ko, C. Hu, and R. Muller, IEEE Trans. Elec. Dev., 29, 1740 (1982)
    [2.16] I. C. Chen, C. Kaya, and J. Paterson, IEDM Tech. Dig., p.263 (1989)
    [2.17] I. C Chen, D. J. Coleman, and C. W. Teng, IEEE Elec. Dev. Lett., 10, 297 (1989)
    [2.18] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, IEDM Tech. Dig., p.279 (1995)
    [2.19] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL.2, NO.4, DECEMBER 2003.
    [2.20] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
    [2.21] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical model of reliability and scaling projections for Flash memories,” in IEDM Tech. Dig., 2001, pp.32.2.1–32.2.4.
    [2.22] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti,“New
    technique for fast characterization of SILC distribution in Flash arrays,” in Proc. IRPS, 2001, pp. 73–80.
    [2.23] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash memories after program/erase cycling,” in Proc. IRPS, 2002, pp. 1–6.
    [2.24] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement in germanium nanocrystals,” Applied Physics Letters, vol.77, pp.1182-1184 (2000)
    [2.25] T. Takagahara and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect- gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992.
    [2.26] J.D.Jackson, “Classcial Electrodynamics”, published by John Wiley & Sons, 1999.
    Chapter 3
    [3.1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Proceedings of the IEEE 91, 4 (2003).
    [3.2] J. D. Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).
    [3.3] C. Y. Lu, T. C. Lu, and R. Liu, Proceedings of 13th IPFA (2006).
    [3.4] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, IEDM Tech. Dig. 521 (1995).
    [3.5] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Devices. 49, 9 (2002).
    [3.6] S. K. Samanta, W. J. Yoo, G. Samudra, E. S. Tok, L. K. Bera, and N. Balasubramanian, Appl. Phys. Lett. 87, 113110 (2005).
    [3.7] T. C. Chang, P. T. Liu, S. T. Yan, and S. M. Sze, Electrochem. Solid-State Lett. 8 (3) G71-G73 (2005).
    [3.8] J. J. Lee, Y. Harada, J. W. Pyun, and D. L. Kwong, Appl. Phys. Lett. 86, 103505 (2005).
    [3.9] C. C. Wang, J. Y. Tseng, T. B. Wu, L. J. Wu, C. S. Liang, and J. M. Wu, J. Appl. Phys. 99, 026102 (2006).
    [3.10]Ch. Sargentis, K. Giannakopoulos, A. Travlos, and D. Tsamakis, Journal of Physics: Conference Series 10, 53-56 (2005).
    [3.11] D. Zhao, Y. Zhu, R. Li, and J. Liu, Solid-State Electronics. 50, 2 (2006).
    [3.12] C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, Joe Hsieh, Jason Chen, Tensor Huang, S. M. Sze, U. S. Chen and J. R. Chen, Appl. Phys. Lett. 92, 013114 (2008).
    [3.13] www.lasurface.com/database, ref.111.
    [3.14] www.lasurface.com/database, ref 13, 111, 150.

    [3.15] Yanfang Shen, Tianying Xiong, Tiefan Li, Ke Yang, Applied Catalysis B: Environmental 83 (2008) 177–185
    [3.16] A. Vomiero, E. Boscolo Marchi, A. Quaranta and G. Della Mea, R. S. Brusa and G. Mariotto, L. Felisari, S. Frabboni, R. Tonini, and G. Ottaviani, G. Mattei, A. Scandurra, O. Puglisi, J. Appl. Phys. 102, 033505 (2007).

    Chapter 4
    [4.1] S.Tiwari, F. Rana, K. Chan, L.Shi, and H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996).
    [4.2] Z. Tan, S. K. Samanta, W. J. Yoo, and S. Lee, Appl. Phys. Lett. 86,013107 (2005).
    [4.3] Robertson J. J Vac. Sci. Technol. B 2000; 18:1785.
    [4.4] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE