簡易檢索 / 詳目顯示

研究生: 馮偉彬
Pang, Wei Ping
論文名稱: Chemical Synthesis and Characterization of Nanocrystal/Graphene Hybrids
奈米晶體/石墨烯複合材料之化學合成與鑑定
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 黃暄益
曾院介
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 石墨烯奈米晶體複合材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先將石墨氧化並剝落成成水溶性的氧化石墨片 (Graphene Oxide, 簡稱GO) 後,再利用油胺 (Oleylamine, 簡稱OLA) 加以改質形成油胺-氧化石墨片(簡稱OLA-GO),使原本分散在水溶液的氧化石墨片轉為分散在有機溶液。這一項改質使得GO在有機溶劑中可以分散得很好且不團聚,維持了其高表面積的優勢。利用這個優勢,我們將傳統的有機化學合成奈米粒子的方法與OLA-GO結合,藉由這個方式成功將各種不同類型的奈米晶體成功的長在石墨烯的表面,其奈米晶體包括: 貴重金屬、金屬氧化物、磁性材料以及半導體材料等。此外,在合成複合物的過程中,GO 也同時被還原成 “化學還原之石墨烯” (Chemically converted graphene, CCG).
    高沸點之有機溶劑能在高溫下進行反應,其溫度範圍涵蓋110oC至400oC,使我們合成出來的奈米晶體具有高度結晶性,不再需要做後續的退火處理。在這項研究中,我們也發現到OLA-GO在合成過程中扮演著重要的角色。若合成時不添加OLA-GO, 得出來的產物會是晶體的聚集物,而並非良好的分散顆粒。我們藉此推斷OLA-GO在合成過程中充當異質介面的角色,觸發奈米晶體在成核過程中以異質成合的模式在CCG表面上成核並長晶,此外我們也不排除GO表面上的管能機協助支撐及固定奈米晶體。
    GO 和CCG複合物的表面形態及厚度藉由原子力探針顯微鏡 (AFM)測得。此外,我們也利用傅利葉紅外光譜(FTIR)分析GO 及OLA-GO之表面官能基,並利用X-Ray能譜儀 (XPS) 探討碳氧鍵結。X光繞射圖 (XRD) 也被利用來分析奈米晶體之晶面,並對照JCPDS數據庫確定晶體結構。另外我們也透過低解析及高解析穿透式電子顯微鏡 (TEM) 觀察GO 及CCG複合物,並對其選區繞射圖(SAED)進行分析。


    Table of Contents 中文摘要 2 Abstract 3 Table of Contents 4 Table of Figures 6 Table 11 Chapter 1. Introduction 12 1.1 Graphene 12 1.2 Colloidal Nanocrystals 16 1.3 Nanocrystals/Graphene Hybrids 20 1.4 Motivation and goal 23 Chapter 2. Experimental 24 2.1 Chemicals 24 2.2 Characterizations 25 2.3 Preparation of Graphene Oxide (GO) 26 2.4 Functionalization of GO 27 2.5 Preparation of Nanocrystals (NCs)/Graphene Hybrids 27 Chapter 3. Results and Discussion 30 3.1 Graphene Oxide (GO) 30 3.1.1 Atomic Force Microscope (AFM) characterization of GO 31 3.1.2 Transmission Electron Microscope (TEM) characterization of GO 32 3.1.3 X-ray Diffraction (XRD) pattern of GO 33 3.1.4 X-ray photoelectron spectroscopy (XRD) of GO 34 3.1.5 Fourier Transform Infrared Spectra (FTIR) of GO 35 3.2 Functionalization of Graphene Oxide by Olelyamine (OLA) 36 3.2.1 FTIR characterization of OLA-GO 36 3.2.2 XPS spectrum of OLA-GO 37 3.3 Nanocrystals (NCs) /Chemically Converted Graphene (CCG) Hybrids 38 3.3.1 XRD analyses of NCs/CCG hybrids 42 3.3.2 HRTEM analyses of NCs/CCG hybrids. 43 3.3.3 XPS analyses of core level spectra of NCs/CCG Hybrids 60 3.3.4 Investigation of the role played by OLA-GO during synthesis 69 3.3.5 The proposed mechanism for the NCs/CCG hybrids formation. 72 3.3.6 The applications of NCs/CCG hybrids. 73 Chapter 4. Conclusion 77 References 78

    [1] K. S. Novoselov, Science 2004, 306, 666-669.
    [2] N. D. Mermin, Physical Review 1968, 176, 250.
    [3] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition 2009, 48, 7752-7777.
    [4] S. Park, R. S. Ruoff, Nat Nanotechnol 2009, 4, 217-224.
    [5] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385-388.
    [6] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Letters 2008, 8, 902-907.
    [7] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201-204.
    [8] A. K. Geim, K. S. Novoselov, Nat Mater 2007, 6, 183-191.
    [9] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat Nano 2008, 3, 538-542.
    [10] L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nat Nano 2010, 5, 321-325.
    [11] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, Acs Nano 2009, 3, 2367-2375.
    [12] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706-710.
    [13] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nat Nano 2010, 5, 574-578.
    [14] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Letters 2008, 8, 2012-2016.
    [15] W. S. Hummers, R. E. Offeman, Journal of the American Chemical Society 1958, 80, 1339-1339.
    [16] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat Nano 2008, 3, 101-105.
    [17] O. C. Compton, S. T. Nguyen, Small 2010, 6, 711-723.
    [18] A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Advanced Functional Materials 2002, 12, 653-664.
    [19] J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew Chem Int Edit 2007, 46, 4630-4660.
    [20] P. Reiss, J. Bleuse, A. Pron, Nano Letters 2002, 2, 781-784.
    [21] J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat Mater 2004, 3, 891-895.
    [22] C. B. Murray, D. J. Norris, M. G. Bawendi, Journal of the American Chemical Society 1993, 115, 8706-8715.
    [23] Y.-w. Jun, Y.-M. Huh, J.-s. Choi, J.-H. Lee, H.-T. Song, KimKim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon, Journal of the American Chemical Society 2005, 127, 5732-5733.
    [24] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat Biotech 2004, 22, 969-976.
    [25] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing Company, 1972.
    [26] R. D. Schaller, V. I. Klimov, Physical Review Letters 2004, 92, 186601.
    [27] a) X. M. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. N. Xia, Annu Rev Phys Chem 2009, 60, 167-192; b) S. Cheong, P. Ferguson, K. W. Feindel, I. F. Hermans, P. T. Callaghan, C. Meyer, A. Slocombe, C. H. Su, F. Y. Cheng, C. S. Yeh, B. Ingham, M. F. Toney, R. D. Tilley, Angew Chem Int Edit 2011, 50, 4206-4209; c) W. Wei, S. Z. Li, J. E. Millstone, M. J. Banholzer, X. D. Chen, X. Y. Xu, G. C. Schatz, C. A. Mirkin, Angew Chem Int Edit 2009, 48, 4210-4212.
    [28] H. Bai, C. Li, G. Shi, Advanced Materials 2011, 23, 1089-1115.
    [29] J. Shen, M. Shi, N. Li, B. Yan, H. Ma, Y. Hu, M. Ye, Nano Research 2010, 3, 339-349.
    [30] H. Wang, Y. Yang, Y. Liang, L.-F. Cui, H. Sanchez Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, Angewandte Chemie 2011, n/a-n/a.
    [31] P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Chemistry of Materials 2011, 23, 2772-2780.
    [32] D. H. Wang, R. Kou, D. Choi, Z. G. Yang, Z. M. Nie, J. Li, L. V. Saraf, D. H. Hu, J. G. Zhang, G. L. Graff, J. Liu, M. A. Pope, I. A. Aksay, Acs Nano 2010, 4, 1587-1595.
    [33] C. Xu, X. Wang, J. Zhu, The Journal of Physical Chemistry C 2008, 112, 19841-19845.
    [34] S. Yang, G. Cui, S. Pang, Q. Cao, U. Kolb, X. Feng, J. Maier, K. Müllen, ChemSusChem 2010, 3, 236-239.
    [35] F. He, J. Fan, D. Ma, L. Zhang, C. Leung, H. L. Chan, Carbon 2010, 48, 3139-3144.
    [36] B.-S. Kong, J. Geng, H.-T. Jung, Chemical Communications 2009, 2174.
    [37] X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, L. Liu, Advanced Materials 2010, 22, 638-642.
    [38] H. He, C. Gao, Chemistry of Materials 2010, 22, 5054-5064.
    [39] S.-M. Paek, E. Yoo, I. Honma, Nano Letters 2009, 9, 72-75.
    [40] J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Journal of the American Chemical Society 2010, 132, 7279-7281.
    [41] a) J. H. L. Beal, S. Prabakar, N. Gaston, G. B. Teh, P. G. Etchegoin, G. Williams, R. D. Tilley, Chemistry of Materials 2011, 23, 2514-2517; b) M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, Journal of the American Chemical Society 2008, 130, 16770-16777; c) K. P. Rice, E. J. Walker, M. P. Stoykovich, A. E. Saunders, J Phys Chem C 2011, 115, 1793-1799.
    [42] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59-61.
    [43] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558-1565.
    [44] L. Carbone, P. D. Cozzoli, Nano Today 2010, 5, 449-493.
    [45] T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chemistry of Materials 2006, 18, 2740-2749.
    [46] C. Xu, X. Wang, J. Zhu, X. Yang, L. Lu, Journal of Materials Chemistry 2008, 18, 5625-5629.
    [47] Y. Li, L. Tang, J. Li, Electrochemistry Communications 2009, 11, 846-849.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE