研究生: |
郭 嶽 Kuo, Yue |
---|---|
論文名稱: |
自導移動機器車取貨及運輸路徑之最短化分析 Analysis of Shortest Path in Pickup and Delivery for Autonomous Mobile Robot Carts |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: |
張國文
Chang, Kuo-Wen 劉晉良 Liu, Jinn-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 路徑規劃 、收發貨問題 、自導移動機器人 |
外文關鍵詞: | Autonomous Mobile Robot, Path Planning, Pickup and Delivery Route |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦科技以及資訊工程之進步,習用自動化操作系統之導入面臨數量飽和問題,必須依靠無人化控制的自主操作系統成為工業自動化新潮流。尤其在耗費人力及業務工作量大之物流產業,必須快速導入人工智能技術以降低營運成本,故自導移動機器車(Autonomous Mobile Robot, 簡稱AMR)成為近幾年發展快速的創新興產業應用。
為符合AMR在室內工廠的基本工作規格及需求,首先必須具備路徑規劃及行進避障之功能。於具備此功能之基本條件下,再繼續研改及提升AMR之運輸效率,故而取貨路徑規劃及路徑優化成為近期學術界廣泛研究與討論之課題。
本論文針對AMR取貨路徑與運輸路徑之優化問題,先探討在運輸車於進行取貨及卸載貨物時,必須先規劃並優化分送順序之排程問題,使AMR行走最短路徑並完成運送任務,於行進中考慮於實務環境所面臨之定位導航及避障限制條件,調整及修正理論演算之取貨與傳遞法則,經實驗驗證後,結果證明可應用於實務之自導移動機器車之室內無人運輸應用,並可預期產生優化路徑之成果及效益。
With the leaps in computer and information technology, automatic guided vehicles are increasingly saturated in the shop floor together with un-human autonomous operation being required in industrial automation. It is mostly noted that the logistics industry has to circumvent the large manpower and workloads problems by quick implementation of artificial intelligence technology for reduction in operation costs. Therefore, Autonomous Mobile Robot systems have become an innovative and essential application in the academia in recent years. To meet the basic working specifications and requirements of AMR systems in production factories, they must be built with path planning and obstacle avoidance functions as the standard features. Based on these functions, it is necessary to improve and enhance transportation efficiency of the AMR systems.
The objective of the thesis is to focus on the optimization of pickup and delivery with prior path planning and optimization so that the AMR can make the shortest path in the delivery task with navigational positioning and obstacle avoiding functions on the route. The experimental verifications of an AMR cart is to demonstrate the feasibility and potential implementation with analysis in the optimization results on the shop floor.
[1] Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007), “ MonoSLAM: Real-time single camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052-1067.
[2] Smith, R. C., & Cheeseman, P. (1986), “ On the representation and estimation of spatial uncertainty”, The international journal of Robotics Research, 5(4), 56-68.
[3] Leonard, J. J., and Durrant-Whyte, H. F. (1991, November), “Simultaneous map building and localization for an autonomous mobile robot”, In IROS (Vol. 3, pp. 1442-1447).
[4] Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2013), ”Rao-Blackwellised particle filtering for dynamic Bayesian networks,” arXiv preprint arXiv:1301.3853.
[5] Grisetti, G., Stachniss, C., and Burgard, W. (2007),” Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Transactions on Robotics, 23(1), 34-46.
[6] Engel, J., Schöps, T., & Cremers, D. (2014, September), ”LSD-SLAM: Large-scale direct monocular SLAM,” In European Conference on Computer Vision, pp. 834-849, Springer, Cham.
[7] https://vision.in.tum.de/research/vslam/lsdslam 網頁
[8] Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on robotics, 31(5), 1147-1163.
[9] https://blog.csdn.net/ei1990/article/details/78313548 網頁
[10] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015), ”ORB-SLAM: a versatile and accurate monocular SLAM system”, IEEE Transactions on Robotics, 31(5), 1147-1163.
[11] Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., and Jurišica, L. (2014), “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, 96, 59-69.
[12] https://www.itread01.com/content/1547359053.html 網頁
[13] Nosrati, M., Karimi, R., and Hasanvand, H. A. (2012), “Investigation of the*(star) search algorithms: Characteristics, methods and approaches,” World Applied Programming, 2(4), 251-256.
[14] Stentz, A. (1997), “Optimal and efficient path planning for partially known environments,” In Intelligent Unmanned Ground Vehicles, pp. 203-220, Springer, Boston, MA.
[15] Koenig, S., and Likhachev, M. (2001), ”Incremental a.” Advances in neural information processing systems, 14, pp.1539-1546.
[16] Koenig, S., and Likhachev, M. (2002). D* lite. Association for the Advancement of Artificial Intelligence/Innovative Applications of Artificial Intelligence, 15.
[17] Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23-33.
[18] Zheng, K. (2016). ROS Navigation Tuning Guide.
[19] Berthold, T. (2006). Primal heuristics for mixed integer programs.
[20] https://www.scipopt.org/ 網頁
[21] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System. In ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).
[22] http://wiki.ros.org/ROS/Tutorials 網頁
[23] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
[24] Battarra, M., Cordeau, J. F., & Iori, M. (2014). Chapter 6: pickup-and-delivery problems for goods transportation. In Vehicle Routing: Problems, Methods, and Applications, Second Edition (pp. 161-191). Society for Industrial and Applied Mathematics.
[25] Hansen, P., Mladenović, N., & Urošević, D. (2006). Variable neighborhood search and local branching. Computers & Operations Research, 33(10), 3034-3045.
[26] Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19(4), 534-541.
[27] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations research, 46(3), 316-329.
[28] Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
[29] Dantzig, G. B. (1948). Programming in a linear structure. Washington, DC.
[30] Ficken, F. A. (2015). The simplex method of linear programming. Courier Dover Publications.
[31] Banciu, M. (2011). Dual simplex. In Wiley Encyclopedia of Operations Research and Management Science. Wiley.
[32] Savelsbergh, M. W., and Sol, M. (1995), “The general pickup and delivery problem,“ Transportation Science, 29(1), pp.17-29.
[33] Lucena, A., & Beasley, J. E. (1996). Branch and cut algorithms. Advances in linear and integer programming, 4, 187-221.
[34] Xu, H., Chen, Z. L., Rajagopal, S., and Arunapuram, S. (2003), ”Solving a practical pickup and delivery problem,” Transportation Science, 37(3), 347-364.
[35] Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2002). VRP with Pickup and Delivery. The vehicle routing problem, 9, 225-242.
[36] Muter, I., Birbil, Ş. İ., & Bülbül, K. (2013). Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows. Mathematical Programming, 142(1), 47-82.
[37] Boyd, S., & Mattingley, J. (2007). Branch and bound methods. Notes for EE364b, Stanford University, 2006-07.
[38] 葉松林,2007,解模糊關係方程式之改良演算法及非線性最佳化問題應用,國立臺灣師範大學電機工程學系碩士論文
[39] http://library.isr.ist.utl.pt/docs/roswiki/hector_slam(2f)Tutorials(2f)SettingUpForYourRobot.html 網頁