簡易檢索 / 詳目顯示

研究生: 范辰佑
Fan, Chen-Yo
論文名稱: 表面功能化和固化策略設計以應用於高靈敏奈米粒子系統和微陣列平台的開發
Surface Functionalization and Immobilization for Developing Highly Sensitive Nanoparticle and Microarray Platforms
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 王聖凱
Wang, Sheng-Kai
陳貴通
Tan, Kui-Thong
林伯樵
Lin, Po-Chiao
謝俊結
Shie, Jiun-Jie
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 226
中文關鍵詞: 位向性固化微陣列晶片點擊反應奈米粒子
外文關鍵詞: Oriented immobilization, Microarray, Click reaction, Nanoparticle
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,免疫磁性奈米粒子和生物晶片這類的生醫材料受到相當多的重視,並廣泛應用於生物分子交互作用的探討及生醫技術應用。然而目前所常用的免疫磁性奈米粒子大多不具有抗體位向性和共價性交聯,導致免疫磁性奈米粒子萃取活性較低。在本論文第二章節中,欲設計結合硼酸和光親和性分子的磁性奈米粒子,利用硼酸親和力及光化學束縛來製備同時具有位向性和共價鍵連結的Fc融合凝集素Siglec-2及抗血清澱粉樣蛋白A抗體(anti-SAA mAb),同時也證明免疫磁性奈米粒子在血清中的穩定性,以及將其應用於萃取細胞膜醣蛋白。相較於傳統隨機固化法,位向專一性的蛋白質活性會比隨機固化的方式高出許多。
    本論文第三和第四章節中,將探討無銅離子自身催化的疊氮化物-炔烴環加成反應(CuAAC)。CuAAC已成為化學連接或生物偶聯中一種強大的偶聯策略,然而,由於銅離子的毒性或銅催化劑的干擾,在生物共軛方面的應用受到限制。因此,我們探討了氧化亞銅奈米粒子(Cu2O NP)的表面螯合催化作用,發現Cu2O NP作為固相載體容納功能分子的同時也能兼具CuAAC的催化劑的作用。此無銅離子策略能將表面銅螯合的炔烴和各種疊氮基經由簡易的混合反應有效地結合在一起,其中包含了醣體小分子以及抗體大分子。我們也將此策略應用至細胞標記上,先透過修飾於Cu2O NP上的配體引導至細胞上,再以無銅離子自身催化作用將香豆素螢光基團標記於細胞。無銅離子自身催化策略提供了一種具有潛力的且生物相容的方法,可用於製造生醫診斷奈米材料,或是進一步用於生物學上研究,且無需使用任何金屬離子和無明顯毒性。
    接著,我們將無銅離子自身催化的策略應用至微陣列晶片上。我們製備了一種銀銅塗層(Ag @ Cu2O)的玻璃晶片,將銀與銅奈米顆粒先後修飾在晶片上,並呈現出雙重功效,包括金屬增強螢光效應(MEF)和無銅離子點擊反應。透過簡易的化學還原方法將金屬沉積在玻璃片上,與矽氧玻璃片相比,其顯示出優異的螢光信號,可達30倍之多。此外,晶片上的銅奈米顆粒可以提供無銅離子非勻相CuAAC點擊反應,在生物感測晶片方面能夠提供更廣泛的應用。我們將Ag @ Cu2O玻片作為氟化物感測器,得到M等級的偵測靈敏度。此外,我們使用BA-tosyl策略位向性地固化PD-L1抗體,進一步應用到這種新開發的玻片中,並顯示出較好的靈敏度和低背景值。在此開發的Ag @ Cu2O晶片提供了一種用於生物學或診斷應用且生物相容的感測平台。


    The utilization of immuno-magnetic nanoparticles (MNPs) for the selective capture, enrichment, and separation of specific glycoproteins from complicated biological samples is appealing for the discovery of disease biomarkers. In the second chapter, MNPs were designed and anchored with boronic acid (BA) and photoreactive diazirine (Diaz) groups to obtain permanently tethered Fc-fused Siglec-2 and antiserum amyloid A (SAA) mAb with the assistance of reversible boronate affinity and UV light activation in an orientation-controlled manner. The Siglec-2-Fc-functionalized MNPs showed excellent stability in fetal bovine serum (FBS) and excellent efficiency in the extraction of cell membrane glycoproteins. The anti-SAA mAb-functionalized MNPs maintained active Ab orientation and preserved antigen recognition capability in biological samples. Thus, the BA-Diaz-based strategy holds promise for the immobilization of glycoproteins, such as antibodies, with the original protein binding activity maintained, which can provide better enrichment for the sensitive detection of target proteins.
    Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is ubiquitous across the organic and biological sciences in chemical ligation or bioconjugation. However, applications toward bioconjugation were limited owing to the toxicity or undesired interruption from Cu-containing catalysts. In the third chapter, we highlighted our discovery of surface chelating catalytic effect by copper nanoparticles (Cu2O NP), which Cu2O NP played a role of solid support to accommodate functional molecules as well as a catalyst to achieve CuAAC subsequently. This self-catalyzed CuAAC strategy combines surface Cu-chelating alkynes with azido-glycans and azido-Ab simply and in good efficiency. Moreover, we incorporate sulfonamide and 3-O-Carbamoylmannose affinity ligands on Cu2O NP for targeting A549 and MCF-7 cell surface receptor of protein respectively. The intracellular click reactions were achieved and measured by reacting with azido-coumarin, which lighted-on upon alkyne-azide cycloaddition. These examples featured not only simple azido compounds and macromolecules such as an antibody, but also live cell targeting and imaging. We believe the new exploration presented herein will be a practical concept to build up methodologies for universal bioconjugation purposes and also with great potential for diverse metal surface catalyzes.
    In the forth chapter, we fabricated an Ag@Cu2O slide with silver and Cu2O coated on microarray device and demonstrated its dual function including metal enhanced fluorescence (MEF) effect and self-catalyzed CuAAC click reaction. The metals were deposited on glass slides by optimized chemical reduction method which showed excellent fluorescent readout signal up to 30-fold better than on silicon slide. Besides, the Cu2O on the slide exhibited a copper ion-free heterogeneous CuAAC click reaction which showed a broader application toward biological sensing on chips. We demonstrated Ag@Cu2O slide as a fluoride sensor with better sensitivity, and an antibody microarray by using BA-tosyl strategies to immobilize antibodies in an oriented manner with lower background signal. The Ag@Cu2O microarray which we developed herein represents a practical and biocompatible sensing platform for biological or diagnostic applications.

    目錄 中文摘要 II Abstract IV Acknowledgement 1 第一章、緒論 3 1.1 表面功能化 3 1.1.1 矽烷化 3 1.1.2 硫醇-金屬交互作用 5 1.2 蛋白質固化 8 1.2.1 非位向性固化法 9 1.2.2 位向專一性固化 16 1.3 點擊化學 24 1.3.1銅(I)催化炔疊氮化物環化加成反應(CuAAC) 25 1.3.2環張力促進炔疊氮化物環化加成反應(SPAAC) 30 1.3.3非均相點擊反應 33 1.4 結語 37 第二章、硼酸及光親和性磁性奈米粒子用於Fc融合凝集素和抗體之位向性及共價鍵的固化 39 2.1 前言及研究動機 39 2.2 結果與討論 39 2.2.1 硼酸及光親和性固化法的概念與設計 39 2.2.2 表面功能化之磁性奈米粒子的製備與鑑定 41 2.2.3 探討不同比例之硼酸和光親合性分子對Siglec-2-Fc的固化效率 45 2.2.4 測試光反應時間及Siglec-2-Fc反應濃度對於固化效率的影響 47 2.2.5 Siglec-2-Fc@MNP在複雜生物系統中的穩定度 48 2.2.6 Siglec-2-Fc@MNP以不同固化方法的結合活性比較 51 2.2.7 以Siglec-2-BA-Diaz@MNP C萃取BJAB細胞中與Siglec-2交互作用之蛋白 52 2.2.8 以anti-SAA mAb-BA-Diaz@MNP C萃取血清中急性反應期蛋白SAA 58 2.3 結論及未來展望 60 2.4 實驗部分 61 2.4.1 Preparation of NHS@MNPs. 61 2.4.2 Preparation of BA-Diaz@MNPs. 61 2.4.3 Preparation of Protein G@MNP. 62 2.4.4 BA-Diaz-based photoimmobilization of Siglec-2-Fc on MNPs. 62 2.4.5 Preparation of DSS@MNPs and oriented photoimmobilization of Siglec-2-Fc on it. 62 2.4.6 Evaluation of the activity of Siglec-2 on MNPs by the recognition of sialyllatose-biotin ligand and fluorescence analysis. 63 2.4.7 Enrichment of Siglec-2-interacting membrane proteins in BJAB cells by Siglec-2-BA-Diaz@MNP C and identification of enriched glycoproteins by LC-MS/MS. 63 2.4.8 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. 64 2.4.9 Identified glycoproteins enriched by Siglec-2-BA-Diaz@MNP C and Siglec-2-BA-Diaz-DSS@MNP. 66 2.4.10 Immunoaffinity purification of SAA using anti-SAA mAb-BA-Diaz@MNP C. 67 2.4.11 MALDI-TOF MS analysis. 67 第三章、表面螯合觸發催化:炔基螯合之無銅點擊反應於氧化亞銅奈米粒子上 68 3.1 研究動機 68 3.2 結果與討論 68 3.2.1 氧化亞銅奈米粒子的合成與鑑定 68 3.2.2 氧化亞銅奈米粒子炔基化以及炔基螯合點擊反應的測試 71 3.2.3 烷基鏈長對於炔基螯合點擊反應效率的探討 79 3.2.4 表面配體密度對於炔基螯合點擊反應效率的探討 81 3.2.5 表面螯合的反應機制探討 84 3.2.6 表面螯合點擊反應應用於醣分子的固化 87 3.2.7 表面螯合點擊反應應用於抗體分子的固化 89 3.2.8 結合兩性分子以抑制抗體非專一性吸附於氧化亞銅奈米粒子 91 3.2.9 p-DPDSPS修飾表面之表面螯合點擊反應反應效率探討 93 3.2.10 氧化亞銅對於酵素活性干擾的探討 97 3.2.11 穀胱甘肽對於氧化亞銅表面螯合點擊反應的干擾 98 3.2.12 表面螯合點擊反應應用於配位基導向癌細胞螢光顯影 100 3.3 結論 106 3.4 實驗部分 106 3.4.0 Instrumentation 106 3.4.1 Synthesis of Cu2O NPs. 107 3.4.2 Study of aggregation-induced emission (AIE) and fluorescence turn-on effect of anthracene and coumarin. 107 3.4.3 Alkyne functionalization of Cu2O NPs. 108 3.4.3 Azide functionalization of Cu2O NPs. 108 3.4.4 AC-click reaction by azido and ethynyl coumarin. 108 3.4.5 Glycan immobilization on Cu2O NPs by AC-click. 109 3.4.6 Antibody immobilization on Cu2O NPs by AC-click. 109 3.4.7 Suppression of protein nonspecific adsorption and the efficiency of AC-click by zwitterionic molecule p-DPDSPS. 109 3.4.8 Enzymatic transfomation of galactose to galactose-1-phosphate catalyzed by galactokinase in the presense of copper source. 110 3.4.9 Preparation of Sulfo-Alk-16@Cu2O and CarbaMan-Alk-16C@Cu2O 111 3.4.10 Fluorescence imaging of A549 cells treated with Sulfo-Alk-16C@Cu2O. 111 3.4.11 Fluorescence imaging of MCF-7 cells treated with CarbaMan-Alk-16C@Cu2O. 111 3.4.12 Cell viability assay 112 第四章、發展無銅離子點擊反應及金屬增強螢光效應之銅銀鍍膜晶片 113 4.1 前言及研究動機 113 4.2 結果與討論 113 4.2.1 銅銀晶片的製備 113 4.2.2 銅銀晶片金屬增強螢光效應的探討 114 4.2.3 銅銀晶片自發催化點擊反應的探討 121 4.2.4 銅銀晶片的表面分析與鑑定 124 4.2.5 醣微陣列銅銀晶片的應用 130 4.2.6 籠閉生物素探針修飾之銅銀晶片偵測氟離子的應用 131 4.2.7 硼酸-對甲苯磺醯基修飾之銅銀晶片在抗體固化上的應用 133 4.2.8 銅銀晶片的穩定度測試 136 4.3 結論 138 4.4 實驗部分 139 4.4.1 Instrumentation. 139 4.4.2 General microarray printing procedure. 139 4.4.3 Fabrication and functionalization of Ag and Ag@Cu2O slide. 139 4.4.4 Evaluation of MEF performance on Ag@Cu2O slide. 140 4.4.5 Efficiency of self-catalyzed AAC on Ag@Cu2O slide. 140 4.4.6 Evaluation of Siglec-Fc-7 and GD3 glycan interaction on Ag@Cu2O slide. 140 4.4.7 Fluoride-sensing by biotin-caged Ag@Cu2O slide. 141 4.4.8 Fabrication of oriented anti-RAC antibody microarray by BA-tosyl Ag@Cu2O slide. 141 4.4.9 Stability test of alkynylated Ag@Cu2O slide. 142 第五章、結論 144 第六章、實驗部分 146 6.1 Materials and methods. 146 6.2 Synthetic procedures for chemical compounds. 146 附錄 165 References 176 Publications 194 NMR spectrums 195

    References
    1. Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M., Application of iron magnetic nanoparticles in protein immobilization. Molecules (Basel, Switzerland) 2014, 19, 11465-11486.
    2. Nimse, S. B.; Song, K.; Sonawane, M. D.; Sayyed, D. R.; Kim, T., Immobilization techniques for microarray: Challenges and applications. Sensors (Basel, Switzerland) 2014, 14, 22208-22229.
    3. Guo, Z.; Guilfoyle, R. A.; Thiel, A. J.; Wang, R.; Smith, L. M., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 1994, 22, 5456-5465.
    4. Lamture, J. B.; Beattie, K. L.; Burke, B. E.; Eggers, M. D.; Ehrlich, D. J.; Fowler, R.; Hollis, M. A.; Kosicki, B. B.; Reich, R. K.; Smith, S. R., Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 1994, 22, 2121-2125.
    5. Tan, A. L. K.; Soutar, A. M.; Annergren, I. F.; Liu, Y. N., Multilayer sol–gel coatings for corrosion protection of magnesium. Surf. Coat. Technol. 2005, 198, 478-482.
    6. Antonucci, J. M.; Dickens, S. H.; Fowler, B. O.; Xu, H. H. K.; McDonough, W. G., Chemistry of silanes: Interfaces in dental polymers and composites. J Res. Natl. Inst. Stan. 2005, 110, 541-558.
    7. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 1983, 105, 4481-4483.
    8. Ferretti, S.; Paynter, S.; Russell, D. A.; Sapsford, K. E.; Richardson, D. J., Self-assembled monolayers: A versatile tool for the formulation of bio-surfaces. TrAC, Trends Anal. Chem. 2000, 19, 530-540.
    9. Liao, W.-S.; Cheunkar, S.; Cao, H. H.; Bednar, H. R.; Weiss, P. S.; Andrews, A. M., Subtractive patterning via chemical lift-off lithography. Science 2012, 337, 1517.
    10. Gautier, C.; Bürgi, T., Chiral n-isobutyryl-cysteine protected gold nanoparticles:  Preparation, size selection, and optical activity in the uv−vis and infrared. J. Am. Chem. Soc. 2006, 128, 11079-11087.
    11. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103-1170.
    12. Sashuk, V., Thiolate-protected nanoparticles via organic xanthates: Mechanism and implications. ACS Nano 2012, 6, 10855-10861.
    13. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J., Formation of ordered self-assembled monolayers by adsorption of octylthiocyanates on Au(111). Langmuir 2008, 24, 91-96.
    14. Pillai, R. G.; Braun, M. D.; Freund, M. S., Electrochemically assisted self-assembly of alkylthiosulfates and alkanethiols on gold: The role of gold oxide formation and corrosion. Langmuir 2010, 26, 269-276.
    15. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C., Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chem. Soc. Rev. 2010, 39, 1805-1834.
    16. Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C., The chemistry of the sulfur–gold interface: In search of a unified model. Acc. Chem. Res. 2012, 45, 1183-1192.
    17. Harris, A. L.; Rothberg, L.; Dubois, L. H.; Levinos, N. J.; Dhar, L., Molecular vibrational energy relaxation at a metal surface: Methyl thiolate on Ag(111). Phys. Rev. Lett. 1990, 64, 2086-2089.
    18. Dhirani, A.; Hines, M. A.; Fisher, A. J.; Ismail, O.; Guyot-Sionnest, P., Structure of self-assembled decanethiol on Ag(111): A molecular resolution scanning tunneling microscopy study. Langmuir 1995, 11, 2609-2614.
    19. Imanishi, A.; Isawa, K.; Matsui, F.; Tsuduki, T.; Yokoyama, T.; Kondoh, H.; Kitajima, Y.; Ohta, T., Structural studies of adsorbed alkanethiols on Cu(111) by use of s and c k-edge x-ray absorption fine structures. Surf. Sci. 1998, 407, 282-292.
    20. Rieley, H.; Kendall, G. K.; Chan, A.; Jones, R. G.; Lu¨decke, J.; Woodruff, D. P.; Cowie, B. C. C., Surface adsorption structures in 1-octanethiol self-assembled on Cu(111). Surf. Sci. 1997, 392, 143-152.
    21. Love, J. C.; Wolfe, D. B.; Haasch, R.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M.; Nuzzo, R. G., Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 2003, 125, 2597-2609.
    22. Carvalho, A.; Geissler, M.; Schmid, H.; Michel, B.; Delamarche, E., Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing. Langmuir 2002, 18, 2406-2412.
    23. Williams, J. A.; Gorman, C. B., Alkanethiol reductive desorption from self-assembled monolayers on gold, platinum, and palladium substrates. J. Phys. Chem. C 2007, 111, 12804-12810.
    24. Mekhalif, Z.; Riga, J.; Pireaux, J. J.; Delhalle, J., Self-assembled monolayers of n-dodecanethiol on electrochemically modified polycrystalline nickel surfaces. Langmuir 1997, 13, 2285-2290.
    25. Castro, M. E.; White, J. M., Decomposition of methanethiol on Ni(111): A tpd and ssims study. Surf. Sci. 1991, 257, 22-32.
    26. Schilardi, P. L.; Dip, P.; dos Santos Claro, P. C.; Benítez, G. A.; Fonticelli, M. H.; Azzaroni, O.; Salvarezza, R. C., Electrochemical deposition onto self-assembled monolayers: New insights into micro- and nanofabrication. Chem. Eur. J. 2006, 12, 38-49.
    27. Burshtain, D.; Mandler, D., The effect of surface attachment on ligand binding: Studying the association of Mg2+, Ca2+ and Sr2+ by 1-thioglycerol and 1,4-dithiothreitol monolayers. PCCP 2006, 8, 158-164.
    28. Torrelles, X.; Vericat, C.; Vela, M. E.; Fonticelli, M. H.; Daza Millone, M. A.; Felici, R.; Lee, T.-L.; Zegenhagen, J.; Muñoz, G.; Martín-Gago, J. A.; Salvarezza, R. C., Two-site adsorption model for the (√3 × √3)-r30° dodecanethiolate lattice on Au(111) surfaces. J. Phys. Chem. B 2006, 110, 5586-5594.
    29. Matthiesen, J. E.; Jose, D.; Sorensen, C. M.; Klabunde, K. J., Loss of hydrogen upon exposure of thiol to gold clusters at low temperature. J. Am. Chem. Soc. 2012, 134, 9376-9379.
    30. Xue, Y.; Li, X.; Li, H.; Zhang, W., Quantifying thiol–gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348.
    31. Ito, E.; Noh, J.; Hara, M., Steric effects on adsorption and desorption behaviors of alkanethiol self-assembled monolayers on Au(111). Chem. Phys. Lett. 2008, 462, 209-212.
    32. Rodríguez, L. M.; Gayone, J. E.; Sánchez, E. A.; Grizzi, O.; Blum, B.; Salvarezza, R. C., Room-temperature kinetics of short-chain alkanethiol film growth on Ag(111) from the vapor phase. J. Phys. Chem. B 2006, 110, 7095-7097.
    33. Mott, D.; Yin, J.; Engelhard, M.; Loukrakpam, R.; Chang, P.; Miller, G.; Bae, I.-T.; Chandra Das, N.; Wang, C.; Luo, J.; Zhong, C.-J., From ultrafine thiolate-capped copper nanoclusters toward copper sulfide nanodiscs: A thermally activated evolution route. Chem. Mater. 2010, 22, 261-271.
    34. Park, S.; Lee, M.-R.; Shin, I., Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 2008, 4389-4399.
    35. Rusmini, F.; Zhong, Z.; Feijen, J., Protein immobilization strategies for protein biochips. Biomacromolecules 2007, 8, 1775-1789.
    36. Jonkheijm, P.; Weinrich, D.; Schröder, H.; Niemeyer, C. M.; Waldmann, H., Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. 2008, 47, 9618-9647.
    37. Vashist, S. K.; Lam, E.; Hrapovic, S.; Male, K. B.; Luong, J. H. T., Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 2014, 114, 11083-11130.
    38. Jegannathan, K. R.; Abang, S.; Poncelet, D.; Chan, E. S.; Ravindra, P., Production of biodiesel using immobilized lipase—a critical review. Crit. Rev. Biotechnol. 2008, 28, 253-264.
    39. Mohamad, N. R.; Marzuki, N. H. C.; Buang, N. A.; Huyop, F.; Wahab, R. A., An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205-220.
    40. Piletsky, S.; Piletska, E.; Bossi, A.; Turner, N.; Turner, A., Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. Biotechnol. Bioeng. 2003, 82, 86-92.
    41. Reck, M.; Stahl, F.; Walter, J. G.; Hollas, M.; Melzner, D.; Scheper, T., Optimization of a microarray sandwich-elisa against hinf-γ on a modified nitrocellulose membrane. Biotechnol. Progr. 2007, 23, 1498-1505.
    42. Dyal, A.; Loos, K.; Noto, M.; Chang, S. W.; Spagnoli, C.; Shafi, K. V. P. M.; Ulman, A.; Cowman, M.; Gross, R. A., Activity of candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 2003, 125, 1684-1685.
    43. Patel, N.; Davies, M. C.; Hartshorne, M.; Heaton, R. J.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M., Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 1997, 13, 6485-6490.
    44. Soleimani, M.; Khani, A.; Najafzadeh, K., Α-amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B: Enzym. 2012, 74, 1-5.
    45. MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760.
    46. Johnsson, B.; Löfås, S.; Lindquist, G., Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 1991, 198, 268-277.
    47. Kuhn, S. J.; Finch, S. K.; Hallahan, D. E.; Giorgio, T. D., Facile production of multivalent enzyme-nanoparticle conjugates. J. Magn. Magn. Mater. 2007, 311, 68-72.
    48. Pagán, M.; Suazo, D.; del Toro, N.; Griebenow, K., A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-swcnt-biosensor. Biosens. Bioelectron. 2015, 64, 138-146.
    49. Sperling, R. A.; Parak, W. J., Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. T. R. Soc. A 2010, 368, 1333-1383.
    50. Groll, J.; Amirgoulova, E. V.; Ameringer, T.; Heyes, C. D.; Röcker, C.; Nienhaus, G. U.; Möller, M., Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J. Am. Chem. Soc. 2004, 126, 4234-4239.
    51. D'Souza, S. F.; Godbole, S. S., Immobilization of invertase on rice husk using polyethylenimine. J. Biochem. Bioph. Methods 2002, 52, 59-62.
    52. Choi, H. J.; Kim, N. H.; Chung, B. H.; Seong, G. H., Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin. Anal. Biochem. 2005, 347, 60-66.
    53. Avseenko, N. V.; Morozova, T. Y.; Ataullakhanov, F. I.; Morozov, V. N., Immobilization of proteins in immunochemical microarrays fabricated by electrospray deposition. Anal. Chem. 2001, 73, 6047-6052.
    54. Wheatley, J. B.; Schmidt Jr, D. E., Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J. Chromatogr. A 1999, 849, 1-12.
    55. Smalla, K.; Turkova, J.; Coupek, J.; Hermann, P., Influence of salts on the covalent immobilization of proteins to modified copolymers of 2-hydroxyethyl methacrylate with ethylene dimethacrylate. Biotechnol. Appl. Biochem. 1988, 10, 21-31.
    56. Viitala, T.; Vikholm, I.; Peltonen, J., Protein immobilization to a partially cross-linked organic monolayer. Langmuir 2000, 16, 4953-4961.
    57. Dormán, G.; Prestwich, G. D., Using photolabile ligands in drug discovery and development. Trends Biotechnol. 2000, 18, 64-77.
    58. Blawas, A. S.; Reichert, W. M., Protein patterning. Biomaterials 1998, 19, 595-609.
    59. Vodovozova, E. L., Photoaffinity labeling and its application in structural biology. Biochemistry (Moscow) 2007, 72, 1-20.
    60. Caelen, I.; Gao, H.; Sigrist, H., Protein density gradients on surfaces. Langmuir 2002, 18, 2463-2467.
    61. Rozsnyai, L. F.; Benson, D. R.; Fodor, S. P. A.; Schultz, P. G., Photolithographic immobilization of biopolymers on solid supports. Angew. Chem. Int. Ed. 1992, 31, 759-761.
    62. Cho, I.-H.; Paek, E.-H.; Lee, H.; Kang, J. Y.; Kim, T. S.; Paek, S.-H., Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Anal. Biochem. 2007, 365, 14-23.
    63. Glavan, A. C.; Niu, J.; Chen, Z.; Güder, F.; Cheng, C.-M.; Liu, D.; Whitesides, G. M., Analytical devices based on direct synthesis of DNA on paper. Anal. Chem. 2016, 88, 725-731.
    64. Guo, S.-L.; Chen, P.-C.; Chen, M.-S.; Cheng, Y.-C.; Lin, J.-M.; Lee, H.-C.; Chen, C.-S., A fast universal immobilization of immunoglobulin g at 4 °C for the development of array-based immunoassays. PLOS ONE 2012, 7, e51370.
    65. Crivianu-Gaita, V.; Aamer, M.; Posaratnanathan, R. T.; Romaschin, A.; Thompson, M., Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein pthrp. Biosens. Bioelectron. 2016, 78, 92-99.
    66. Yang, H.-M.; Liang, S.-J.; Tang, J.-B.; Chen, Y.; Cheng, Y.-Z., Immobilization of unraveled immunoglobulin g using well-oriented zz–his protein on functionalized microtiter plate for sensitive immunoassay. Anal. Biochem. 2013, 432, 134-138.
    67. Jung, Y.; Kang, H. J.; Lee, J. M.; Jung, S. O.; Yun, W. S.; Chung, S. J.; Chung, B. H., Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal. Biochem. 2008, 374, 99-105.
    68. Hochuli, E.; Döbeli, H.; Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. A 1987, 411, 177-184.
    69. Lee, J. K.; Kim, Y.-G.; Chi, Y. S.; Yun, W. S.; Choi, I. S., Grafting nitrilotriacetic groups onto carboxylic acid-terminated self-assembled monolayers on gold surfaces for immobilization of histidine-tagged proteins. J. Phys. Chem. B 2004, 108, 7665-7673.
    70. Irving, H.; Williams, R. J. P., 637. The stability of transition-metal complexes. J. Chem. Soc. 1953, 3192-3210.
    71. Wang, X.; Xia, N.; Liu, L., Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int. J. Mol. 2013, 14.
    72. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C., Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem. 2009, 81, 8774-8782.
    73. Moreno-Guzmán, M.; Ojeda, I.; Villalonga, R.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M., Ultrasensitive detection of adrenocorticotropin hormone (acth) using disposable phenylboronic-modified electrochemical immunosensors. Biosens. Bioelectron. 2012, 35, 82-86.
    74. Song, L.; Zhao, J.; Luan, S.; Ma, J.; Liu, J.; Xu, X.; Yin, J., Fabrication of a detection platform with boronic-acid-containing zwitterionic polymer brush. ACS Appl. Mater. Interfaces 2013, 5, 13207-13215.
    75. Duval, F.; van Beek, T. A.; Zuilhof, H., Key steps towards the oriented immobilization of antibodies using boronic acids. Analyst 2015, 140, 6467-6472.
    76. Tao, L.; Zhang, K.; Sun, Y.; Jin, B.; Zhang, Z.; Yang, K., Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens. Bioelectron. 2012, 35, 186-192.
    77. Trilling, A. K.; Beekwilder, J.; Zuilhof, H., Antibody orientation on biosensor surfaces: A minireview. Analyst 2013, 138, 1619-1627.
    78. Sharma, H.; Mutharasan, R., Half antibody fragments improve biosensor sensitivity without loss of selectivity. Anal. Chem. 2013, 85, 2472-2477.
    79. Karyakin, A. A.; Presnova, G. V.; Rubtsova, M. Y.; Egorov, A. M., Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal. Chem. 2000, 72, 3805-3811.
    80. Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J., Orientation and characterization of immobilized antibodies for improved immunoassays (review). Biointerphases 2017, 12, 02D301.
    81. Ericsson, E. M.; Enander, K.; Bui, L.; Lundström, I.; Konradsson, P.; Liedberg, B., Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: A strategy for microarraying of protein ligands. Langmuir 2013, 29, 11687-11694.
    82. Adak, A. K.; Li, B.-Y.; Huang, L.-D.; Lin, T.-W.; Chang, T.-C.; Hwang, K. C.; Lin, C.-C., Fabrication of antibody microarrays by light-induced covalent and oriented immobilization. ACS Appl. Mater. Interfaces 2014, 6, 10452-10460.
    83. Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto, P.; Vidugiris, G.; Zhu, J.; Darzins, A.; Klaubert, D. H.; Bulleit, R. F.; Wood, K. V., Halotag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 2008, 3, 373-382.
    84. Los, G. V.; Wood, K., The halotag™. In High content screening: A powerful approach to systems cell biology and drug discovery, Taylor, D. L.; Haskins, J. R.; Giuliano, K. A., Eds. Humana Press: Totowa, NJ, 2006; pp 195-208.
    85. Ohana, R. F.; Encell, L. P.; Zhao, K.; Simpson, D.; Slater, M. R.; Urh, M.; Wood, K. V., Halotag7: A genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr. Purif. 2009, 68, 110-120.
    86. Taniguchi, Y.; Kawakami, M., Application of halotag protein to covalent immobilization of recombinant proteins for single molecule force spectroscopy. Langmuir 2010, 26, 10433-10436.
    87. Nath, N.; Hurst, R.; Hook, B.; Meisenheimer, P.; Zhao, K. Q.; Nassif, N.; Bulleit, R. F.; Storts, D. R., Improving protein array performance: Focus on washing and storage conditions. J. Proteome Res. 2008, 7, 4475-4482.
    88. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
    89. Breinbauer, R.; Köhn, M., Azide–alkyne coupling: A powerful reaction for bioconjugate chemistry. ChemBioChem 2003, 4, 1147-1149.
    90. Hänni, K. D.; Leigh, D. A., The application of cuaac ‘click’ chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev. 2010, 39, 1240-1251.
    91. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003, 8, 1128-1137.
    92. Huisgen, R., 1,3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 1963, 2, 565-598.
    93. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V., Copper(I)-catalyzed synthesis of azoles. Dft study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210-216.
    94. Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A., Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 2008, 28, 278-308.
    95. Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.; Zhu, L., Apparent copper(II)-accelerated azide−alkyne cycloaddition. Org. Lett. 2009, 11, 4954-4957.
    96. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 2004, 6, 2853-2855.
    97. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G., Analysis and optimization of copper-catalyzed azide–alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879-9883.
    98. Soriano del Amo, D.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 2010, 132, 16893-16899.
    99. Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.; Soriano del Amo, D.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.; Wu, P., Increasing the efficacy of bioorthogonal click reactions for bioconjugation: A comparative study. Angew. Chem. Int. Ed. 2011, 50, 8051-8056.
    100. Yang, M.; Jalloh, A. S.; Wei, W.; Zhao, J.; Wu, P.; Chen, P. R., Biocompatible click chemistry enabled compartment-specific ph measurement inside e. Coli. Nat. Commun. 2014, 5, 4981.
    101. Jiang, H.; Zheng, T.; Lopez-Aguilar, A.; Feng, L.; Kopp, F.; Marlow, F. L.; Wu, P., Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjugate Chem. 2014, 25, 698-706.
    102. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
    103. Gerard, B.; Ryan, J.; Beeler, A. B.; Porco, J. A., Synthesis of 1,4,5-trisubstituted-1,2,3-triazoles by copper-catalyzed cycloaddition-coupling of azides and terminal alkynes. Tetrahedron 2006, 62, 6405-6411.
    104. Barré, G.; Taton, D.; Lastécouères, D.; Vincent, J.-M., Closer to the “ideal recoverable catalyst” for atom transfer radical polymerization using a molecular non-fluorous thermomorphic system. J. Am. Chem. Soc. 2004, 126, 7764-7765.
    105. Liang, L.; Ruiz, J.; Astruc, D., The efficient copper(I) (hexabenzyl)tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: Positive dendritic effects and monometallic mechanism. Adv. Synth. Catal. 2011, 353, 3434-3450.
    106. Li, L.; Lopes, P. S.; Rosa, V.; Figueira, C. A.; Lemos, M. A. N. D. A.; Duarte, M. T.; Avilés, T.; Gomes, P. T., Synthesis and structural characterisation of (aryl-bian)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes. Dalton Trans. 2012, 41, 5144-5154.
    107. Barta, M. J.; Díez-González, S., Well-defined diimine copper(I) complexes as catalysts in click azide-alkyne cycloaddition reactions. Molecules 2013, 18.
    108. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046-15047.
    109. Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified staudinger reaction. Science 2000, 287, 2007.
    110. Chigrinova, M.; McKay, C. S.; Beaulieu, L.-P. B.; Udachin, K. A.; Beauchemin, A. M.; Pezacki, J. P., Rearrangements and addition reactions of biarylazacyclooctynones and the implications to copper-free click chemistry. Org. Biomol. Chem. 2013, 11, 3436-3441.
    111. Chang, P. V.; Prescher, J. A.; Sletten, E. M.; Baskin, J. M.; Miller, I. A.; Agard, N. J.; Lo, A.; Bertozzi, C. R., Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1821.
    112. Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L., Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. 2016, 374, 16.
    113. Sletten, E. M.; Bertozzi, C. R., A hydrophilic azacyclooctyne for cu-free click chemistry. Org. Lett. 2008, 10, 3097-3099.
    114. Stöckmann, H.; Neves, A. A.; Stairs, S.; Ireland-Zecchini, H.; Brindle, K. M.; Leeper, F. J., Development and evaluation of new cyclooctynes for cell surface glycan imaging in cancer cells. Chem. Sci. 2011, 2, 932-936.
    115. Friscourt, F.; Ledin, P. A.; Mbua, N. E.; Flanagan-Steet, H. R.; Wolfert, M. A.; Steet, R.; Boons, G.-J., Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells. J. Am. Chem. Soc. 2012, 134, 5381-5389.
    116. Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L. J. A.; Rutjes, F. P. J. T.; van Hest, J. C. M.; Lefeber, D. J.; Friedl, P.; van Delft, F. L., Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. 2010, 49, 9422-9425.
    117. Lee, C. Y.; Held, R.; Sharma, A.; Baral, R.; Nanah, C.; Dumas, D.; Jenkins, S.; Upadhaya, S.; Du, W., Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers. J. Org. Chem. 2013, 78, 11221-11228.
    118. Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:  From theory to applications. Chem. Rev. 2007, 107, 4797-4862.
    119. Ranu, B. C.; Dey, R.; Chatterjee, T.; Ahammed, S., Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 2012, 5, 22-44.
    120. Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C. M.; Baldino, C. M., Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Lett. 2005, 46, 2911-2914.
    121. Pachón, L. D.; van Maarseveen, J. H.; Rothenberg, G., Click chemistry: Copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal. 2005, 347, 811-815.
    122. Lipshutz, B. H.; Taft, B. R., Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew. Chem. Int. Ed. 2006, 45, 8235-8238.
    123. Chanda, K.; Rej, S.; Huang, M. H., Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1,2,3-triazoles by multicomponent click reactions. Chem. Eur. J. 2013, 19, 16036-16043.
    124. Clavadetscher, J.; Hoffmann, S.; Lilienkampf, A.; Mackay, L.; Yusop, R. M.; Rider, S. A.; Mullins, J. J.; Bradley, M., Copper catalysis in living systems and in situ drug synthesis. Angew. Chem. Int. Ed. 2016, 55, 15662-15666.
    125. Decan, M. R.; Impellizzeri, S.; Marin, M. L.; Scaiano, J. C., Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat. Commun. 2014, 5, 4612.
    126. Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 2014, 14, 653-666.
    127. Chang, L.; Chen, Y.-J.; Fan, C.-Y.; Tang, C.-J.; Chen, Y.-H.; Low, P.-Y.; Ventura, A.; Lin, C.-C.; Chen, Y.-J.; Angata, T., Identification of siglec ligands using a proximity labeling method. J. Proteome Res. 2017, 16, 3929-3941.
    128. Powell, L. D.; Jain, R. K.; Matta, K. L.; Sabesan, S.; Varki, A., Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22: Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 1995, 270, 7523-7532.
    129. Lin, P.-C.; Tseng, M.-C.; Su, A.-K.; Chen, Y.-J.; Lin, C.-C., Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal. Chem. 2007, 79, 3401-3408.
    130. Das, J., Aliphatic diazirines as photoaffinity probes for proteins: Recent developments. Chem. Rev. 2011, 111, 4405-4417.
    131. Lin, P.-C.; Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Wang, K.-Y.; Chen, Y.-J.; Lin, C.-C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    132. Chen, M.-L.; Adak, A. K.; Yeh, N.-C.; Yang, W.-B.; Chuang, Y.-J.; Wong, C.-H.; Hwang, K.-C.; Hwu, J.-R. R.; Hsieh, S.-L.; Lin, C.-C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem. Int. Ed. 2008, 47, 8627-8630.
    133. Zhang, Q.; Su, R.; Wang, J.-P.; Zhang, Q., Influence of magnetic Fe3O4 nanoparticles on fluorescence quenching of dye molecules. J. Nanosci. Nanotechnol. 2016, 16, 7427-7432.
    134. Robinson, P. A.; Anderton, B. H.; Loviny, T. L. F., Nitrocellulose-bound antigen repeatedly used for the affinity purification of specific polyclonal antibodies for screening DNA expression libraries. J. Immunol. Methods 1988, 108, 115-122.
    135. Hashimoto, M.; Hatanaka, Y., Recent progress in diazirine-based photoaffinity labeling. Eur. J. Org. Chem. 2008, 2008, 2513-2523.
    136. Saha, B.; Evers, T. H.; Prins, M. W. J., How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal. Chem. 2014, 86, 8158-8166.
    137. Abad, J. M.; Vélez, M.; Santamaría, C.; Guisán, J. M.; Matheus, P. R.; Vázquez, L.; Gazaryan, I.; Gorton, L.; Gibson, T.; Fernández, V. M., Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J. Am. Chem. Soc. 2002, 124, 12845-12853.
    138. Cyster, J. G.; Goodnow, C. C., Tuning antigen receptor signaling by CD22: Integrating cues from antigens and the microenvironment. Immunity 1997, 6, 509-517.
    139. Ramya, T. N. C.; Weerapana, E.; Liao, L.; Zeng, Y.; Tateno, H.; Liao, L.; Yates, J. R., 3rd; Cravatt, B. F.; Paulson, J. C., In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol. Cell Proteomics 2010, 9, 1339-1351.
    140. Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A. C.-Y.; Chen, J.-H.; Lin, C.-C.; Chen, Y.-J., Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal. Chem. 2005, 77, 5990-5997.
    141. Han, S.; Collins, B. E.; Bengtson, P.; Paulson, J. C., Homomultimeric complexes of CD22 in b cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 2005, 1, 93-97.
    142. Madge, P. D.; Maggioni, A.; Pascolutti, M.; Amin, M.; Waespy, M.; Bellette, B.; Thomson, R. J.; Kelm, S.; von Itzstein, M.; Haselhorst, T., Structural characterisation of high affinity siglec-2 (CD22) ligands in complex with whole burkitt’s lymphoma (bl) daudi cells by nmr spectroscopy. Sci. Rep. 2016, 6, 36012.
    143. Zhang, M.; Varki, A., Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 2004, 14, 939-949.
    144. Jang, Y.; Broun, A.; Wang, C.; Park, Y.-K.; Zhuang, L.; Lee, J.-E.; Froimchuk, E.; Liu, C.; Ge, K., H3.3k4m destabilizes enhancer h3k4 methyltransferases mll3/mll4 and impairs adipose tissue development. Nucleic Acids Res. 2018, 47, 607-620.
    145. Chen, S.-H.; Liao, H.-K.; Chang, C.-Y.; Juo, C.-G.; Chen, J.-H.; Chan, S. I.; Chen, Y.-J., Targeted protein quantitation and profiling using pvdf affinity probe and maldi-tof ms. Proteomics 2007, 7, 3038-3050.
    146. Wang, K.-Y.; Chuang, S.-A.; Lin, P.-C.; Huang, L.-S.; Chen, S.-H.; Ouarda, S.; Pan, W.-H.; Lee, P.-Y.; Lin, C.-C.; Chen, Y.-J., Multiplexed immunoassay: Quantitation and profiling of serum biomarkers using magnetic nanoprobes and maldi-tof ms. Anal. Chem. 2008, 80, 6159-6167.
    147. Bull, S. D.; Davidson, M. G.; van den Elsen, J. M. H.; Fossey, J. S.; Jenkins, A. T. A.; Jiang, Y.-B.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T. D., Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly. Acc. Chem. Res. 2013, 46, 312-326.
    148. Han, C.-L.; Chien, C.-W.; Chen, W.-C.; Chen, Y.-R.; Wu, C.-P.; Li, H.; Chen, Y.-J., A multiplexed quantitative strategy for membrane proteomics. Mol. Cell. Proteomics 2008, 7, 1983.
    149. Burrows, C. J.; Muller, J. G., Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 1998, 98, 1109-1152.
    150. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H., Synthesis of ultrasmall Cu2O nanocubes and octahedra with tunable sizes for facet-dependent optical property examination. Small 2016, 12, 3530-3534.
    151. Chen, L.; Zhang, Y.; Zhu, P.; Zhou, F.; Zeng, W.; Lu, D. D.; Sun, R.; Wong, C., Copper salts mediated morphological transformation of Cu2O from cubes to hierarchical flower-like or microspheres and their supercapacitors performances. Sci. Rep. 2015, 5, 9672.
    152. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887-898.
    153. Miguel-Ávila, J.; Tomás-Gamasa, M.; Olmos, A.; Pérez, P. J.; Mascareñas, J. L., Discrete Cu(I) complexes for azide–alkyne annulations of small molecules inside mammalian cells. Chem. Sci. 2018, 9, 1947-1952.
    154. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
    155. Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q., A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 2004, 6, 4603-4606.
    156. Séro, L.; Sanguinet, L.; Derbré, S.; Boury, F.; Brotons, G.; Dabos-Seignon, S.; Richomme, P.; Séraphin, D., Fluorescent self-assembled monolayers of umbelliferone: A relationship between contact angle and fluorescence. Langmuir 2013, 29, 10423-10431.
    157. Kittredge, K. W.; Fox, M. A.; Whitesell, J. K., Effect of alkyl chain length on the fluorescence of 9-alkylfluorenyl thiols as self-assembled monolayers on gold. J. Phys. Chem. B 2001, 105, 10594-10599.
    158. Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F., Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 5916-5920.
    159. Sharma, S.; Bharadwaj, S.; Surolia, A.; Podder, S. K., Evaluation of the stoichiometry and energetics of carbohydrate binding to ricinus communis agglutinin: A calorimetric study. Biochem. J 1998, 333, 539-542.
    160. De Sousa Linhares, A.; Battin, C.; Jutz, S.; Leitner, J.; Hafner, C.; Tobias, J.; Wiedermann, U.; Kundi, M.; Zlabinger, G. J.; Grabmeier-Pfistershammer, K.; Steinberger, P., Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci. Rep. 2019, 9, 11472.
    161. Pardoll, D. M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252-264.
    162. Yi, S.; Lee, W. K.; Park, J.-H.; Lee, J.-S.; Seo, J.-H., One-pot synthesis of a zwitterionic small molecule bearing disulfide moiety for antibiofouling macro- and nanoscale gold surfaces. Langmuir 2019, 35, 1768-1777.
    163. Holden, H. M.; Rayment, I.; Thoden, J. B., Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885-43888.
    164. Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489-492.
    165. Supuran, C. T., Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168-181.
    166. Bhattacharya, C.; Yu, Z.; Rishel, M. J.; Hecht, S. M., The carbamoylmannose moiety of bleomycin mediates selective tumor cell targeting. Biochemistry 2014, 53, 3264-3266.
    167. Ray, K.; Chowdhury, M. H.; Zhang, J.; Fu, Y.; Szmacinski, H.; Nowaczyk, K.; Lakowicz, J. R., Plasmon-controlled fluorescence towards high-sensitivity optical sensing. In Optical sensor systems in biotechnology, Rao, G., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 1-28.
    168. Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G., Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102-116.
    169. Zenin, V. A.; Andryieuski, A.; Malureanu, R.; Radko, I. P.; Volkov, V. S.; Gramotnev, D. K.; Lavrinenko, A. V.; Bozhevolnyi, S. I., Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett. 2015, 15, 8148-8154.
    170. Blixt, O.; Collins, B. E.; van den Nieuwenhof, I. M.; Crocker, P. R.; Paulson, J. C., Sialoside specificity of the siglec family assessed using novel multivalent probes: Identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 2003, 278, 31007-31019.
    171. Yamaguchi, S.; Yoshimura, A.; Yasuda, Y.; Mori, A.; Tanaka, H.; Takahashi, T.; Kitajima, K.; Sato, C., Chemical synthesis and evaluation of a disialic acid-containing dextran polymer as an inhibitor for the interaction between siglec 7 and its ligand. ChemBioChem 2017, 18, 1194-1203.
    172. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T., Rational development of caged-biotin protein-labeling agents and some applications in live cells. Chem. Biol. 2011, 18, 1261-1272.
    173. Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I., Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chem. Commun. 2009, 4735-4737.
    174. Yang, Y.-L.; Lee, Y.-P.; Yang, Y.-L.; Lin, P.-C., Traceless labeling of glycoproteins and its application to the study of glycoprotein–protein interactions. ACS Chem. Biol. 2014, 9, 390-397.
    175. Jin, S.; Choudhary, G.; Cheng, Y.; Dai, C.; Li, M.; Wang, B., Fluoride protects boronic acids in the copper(I)-mediated click reaction. Chem. Commun. 2009, 5251-5253.
    176. Qu, L.; Dai, L., Novel silver nanostructures from silver mirror reaction on reactive substrates. J. Phys. Chem. B 2005, 109, 13985-13990.
    177. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α-2,6-linked sialosides: A p. Damsela α-2,6-sialyltransferase with extremely flexible donor–substrate specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-3944.
    178. Kambe, T.; Correia, B. E.; Niphakis, M. J.; Cravatt, B. F., Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 2014, 136, 10777-10782.
    179. Singh, J.; Steck, N.; De, D.; Hofer, A.; Ripp, A.; Captain, I.; Keller, M.; Wender, P. A.; Bhandari, R.; Jessen, H. J., A phosphoramidite analogue of cyclotriphosphate enables iterative polyphosphorylations. Angew. Chem. Int. Ed. 2019, 58, 3928-3933.
    180. Bezagu, M.; Errico, C.; Chaulot-Talmon, V.; Monti, F.; Tanter, M.; Tabeling, P.; Cossy, J.; Arseniyadis, S.; Couture, O., High spatiotemporal control of spontaneous reactions using ultrasound-triggered composite droplets. J. Am. Chem. Soc. 2014, 136, 7205-7208.
    181. Gobbo, P.; Workentin, M. S., Improved methodology for the preparation of water-soluble maleimide-functionalized small gold nanoparticles. Langmuir 2012, 28, 12357-12363.
    182. Grabosch, C.; Kind, M.; Gies, Y.; Schweighöfer, F.; Terfort, A.; Lindhorst, T. K., A ‘dual click’ strategy for the fabrication of bioselective, glycosylated self-assembled monolayers as glycocalyx models. Org. Biomol. Chem. 2013, 11, 4006-4015.
    183. Bonnet, D.; Ilien, B.; Galzi, J.-L.; Riché, S.; Antheaune, C.; Hibert, M., A rapid and versatile method to label receptor ligands using “click” chemistry:  Validation with the muscarinic m1 antagonist pirenzepine. Bioconjugate Chem. 2006, 17, 1618-1623.
    184. Wu, H.-R.; Anwar, M. T.; Fan, C.-Y.; Low, P. Y.; Angata, T.; Lin, C.-C., Expedient assembly of oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem lacnac and sialic acid position towards siglec binding. Eur. J. Med. Chem. 2019, 180, 627-636.
    185. Natarajan, A.; Du, W.; Xiong, C.-Y.; DeNardo, G. L.; DeNardo, S. J.; Gervay-Hague, J., Construction of di-scfv through a trivalent alkyne–azide 1,3-dipolar cycloaddition. Chem. Commun. 2007, 695-697.

    QR CODE