簡易檢索 / 詳目顯示

研究生: 林永展
Yung-Chan Lin
論文名稱: 二價鎳與二價銅大環錯合物之結構與動力學
Structures and Kinetics of Nickel(II) and Copper(II) Macrocyclic Complexes
指導教授: 鍾崇燊
Chung-Sun Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 259
中文關鍵詞: 結構動力學大環
外文關鍵詞: structure,, kinetic, macrocycle
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所使用之四胺基大環配位子合成方法有兩種。(一)Richman與Atkins所發展的方法,以保護基方法進行大環配位子之合成如isocyclam;(二)一般有機合成法,利用麥可加成反應合成大環配位子如3-10-C-meso-Me8[14]dieneN4.2HClO4。所合成之配位子經由核磁共振光譜儀、紅外光譜儀、紫外光-可見光吸收光譜儀、質譜儀及X光單晶繞射,分析其結構及組成。鎳(II)及銅(II)錯合物係使用Ni(ClO4)2.6H2O、Ni(OAc)2.4H2O或Cu(ClO4)2.6H2O直接在熱甲醇中與大環配位子進行錯合反應,並在水溶液中或acetonitrile中再結晶純化。
    使用NaBH4還原3-10-C-meso-Me8[14]dieneN4·2HClO4後,所產生的異構物LB、LC及其鎳(II)與銅(II)錯合物經由核磁共振光譜儀、X光單晶繞射分析,與已知之文獻報導不同,且使用文獻報導及本論文的實驗方法並無法得到LA。根據實驗結果,此三種異構物之熔點為LB > LC,推測LA熔點應大於LB;在MeOH中之溶解度LB < LC,推測LA < LB。在1H NMR分析之下,LB的八個甲基團只有四組NMR吸收,顯示LB為一對稱分子;而LC則有八組吸收,為一非對稱分子。在LB的13C NMR圖譜中,分子中的十八個碳基只有九組NMR吸收,證實LB為一對稱分子;而LC則有十八組NMR吸收,表示每一個碳基的化學環境位置不相同,為一非對稱分子。
    我們亦已探討LB、LC及其鎳(II)、銅(II)錯合物之晶體結構的X-ray繞射分析。
    (1) 3,10-C-meso-5,12-C-meso-Me8[14]aneN4 (LB)
    LB大環分子具有一個反轉中心,環上四個氮原子位於徑向平面位置,以椅形構造存在。結構中具有四個不對稱碳中心,分別為3S、5S、10R及12R。3S與10R上之甲基成反式結構,皆位於軸向;5S與12R上之甲基亦成反式結構,但皆位於俓向。
    (2) 3,10-C-meso-5,12-C-rac-Me8[14]aneN4 (LC)
    LC大環上四個氮原子並未在同平面上,而成蝶形結構。此結構具有四個不對稱碳中心,分別為3S、5S、10R、12S。3S與10R上之甲基成反式結構,3S位於軸向,10R位於俓向;5S與12S上之甲基成順式結構,即位於大環同側,皆位於俓向。
    (3) [CuLB(H2O)2](ClO4)2
    此結構具有一個反轉中心,環上四個氮原子位於徑向平面位置,銅(II)離子則位於四氮平面中間,在平面上下各有一個軸向水分子,形成六配位之扭曲八面體結構,屬於“4 + 2”型配位結構;大環四氮原子與銅離子間為強力的配位鍵,而兩水分子與銅離子則為微弱的配位鍵。所形成的兩個六員螯合環均為穩定chair構形,兩個五員螯合環為gauche構形。大環配位子上四個不對稱氮原子的組態分別為1R,4S,8S及11R。3S與10R上之甲基成反式結構,皆位於軸向;5S與12R上之甲基亦成反式結構,但皆位於俓向。
    (4) [CuLC(ClO4)2]
    銅(II)離子與大環配位子的四個氮原子鍵結配位於水平軸向,與兩個過氯酸根離子的氧原子鍵結配位於軸向成反式結構,形成六配位扭曲八面體之結構,屬於“5 + 1”型配位結構,其中Cu(1)-O(3)形成較弱的配位鍵,而Cu(1)-O(6) 則形成較強的配位鍵。大環配位子與銅(II)離子錯合所形成的兩個六員螯合環均為穩定chair構形,兩個五員螯合環為gauche構形。大環配位子上四個不對稱氮原子的組態分別為1S,4R,8R及11S。3S與10R上之甲基成反式結構,皆位於徑向。5S與12S上之甲基成順式結構;5S於俓向,12S位於軸向。
    (5) [NiLB](ClO4)2
    此結構具有一個反轉中心,環上四個氮原子位於徑向平面位置,鎳(II)離子則位於四氮平面中間,形成穩定的四配位結構,為一平面四邊形之結構,所形成的兩個六員螯合環均為穩定chair構形,兩個五員螯合環為gauche構形。大環配位子上四個不對稱氮原子的組態分別為1R,4S,8S及11R。3S與10R上之甲基成反式結構,皆位於軸向;5S與12R上之甲基亦成反式結構,但皆位於俓向。
    (6) [NiLC](ClO4)2
    鎳(II)離子位於四氮平面中間,環上四個氮原子則位於徑向平面位置,形成穩定的四配位結構,為一扭曲平面四邊形之結構,所形成的兩個六員螯合環為一穩定chair 構形及一twist-boat構形,兩個五員螯合環為一gauche構形及一distorted eclipsed構形,大環配位子上四個不對稱氮原子的組態分別為1S,4R,8S及11S。3S與10R上之甲基成反式結構,3S上之甲基位於徑向,10R上之甲基位於軸向。5S與12S上之甲基成順式結構;5S上之甲基位於twist-boat構形六員螯合環之軸向,12S上之甲基位於chair構形六員螯合環之俓向。
    由於鎳(II)四胺基大環配位錯合物在水溶液中具有順式、反式,平面型三種平衡存在,分佈的比例與溫度、離子強度、酸鹼度、立體因素等有關。藍變黃之標準平衡常數係使用紫外-可見光光譜儀測量,所得結果為離子強度愈大反應趨向低自旋方型平面物種之生成,且溫度增加時,平衡亦有利於方型平面物種之生成。當四胺基大環配位子環上的甲基數目愈多,愈容易形成方型平面物種,尤其軸向甲基的存在使鎳(II)錯合物之高低自旋物種之熱力學標準平衡常數與其ΔHo及ΔSo變化均變大,推論由其結構扭曲性增加所致。從環穴大小關係而言,[13]aneN4最適合與低自旋鎳(II)離子形成平面型錯合物, V (d-d)值之大小順序為:[13]aneN4 > [12]aneN4 > [14]aneN4 > [15]aneN4。
    為了探討自由鹼與配位鹼對不對稱氮中心反轉反應之催化效應,本研究使用[Ni(isocyclam)(H2O)2]2+錯合物進行反應。由於[Ni(isocyclam)(H2O)2]2+錯合物只需反轉一個氮中心,且由[Ni(isocyclam)(H2O)2]2+晶體結構中發現此氮中心無法與配位之OH-經由水分子形成分子間氫鍵,進行配位鹼催化路徑反應,因此認為反應機構應為自由鹼催化路徑。此外,在pH 7 – 9水溶液中,速率定律式為R = kOH[OH-][cis-[Ni(isocyclam)(H2O)2]2+],其中在25.0 oC離子強度為0.10 mol dm-3 (NaClO4)的水溶液中,kOH = 3.84 ´ 103 dm3 mol-1 s-1,較大的ΔH¹ (61.7 ± 3.2 kJ mol-1)及正值的ΔS¹ (30.2 ± 10.8 J K-1 mol-1)證明[Ni(isocyclam)(H2O)2]2+之不對稱氮中心反轉反應是經由自由鹼催化路徑,不同於[13]aneN4、cyclam、C-meso-5,12-Me2cyclam及C-rac-5,12-Me2cyclam摺疊型Ni(II)錯合物之配位鹼催化路徑有較小的ΔH¹及負值的ΔS¹。在高濃度OH-及不同離子強度水溶液中之反應,以截流分光光譜儀偵測其動力學,則可得到不同的速率常數(k2),說明溶液中自由的OH-與[Ni(isocyclam)(H2O)2]2+進行反應時受到離子強度的影響,亦為自由鹼催化路徑的證據之一。


    The tetraaza-macrocyclic ligands were synthesized by two methods. (1) The protecting group method reported by Richman and Atkins was used for the synthesis of isocyclam. (2) The general organic method with Michael addition reaction was employed to prepare 3-10-C-meso-Me8[14]dieneN4.2HClO4. The structures and components of these ligands were analyzed and identified by NMR, IR, UV-vis, mass, and X-ray studies. The complexes of Ni(II) and Cu(II) were synthesized by using Ni(ClO4)2.6H2O, Ni(OAc)2.4H2O, or Cu(ClO4)2.6H2O in hot methanol solution and recrystallized from water or acetonitrile.
    According to the results of NMR and X-ray studies, the structures of isomers, LB and LC, from reduction of 3-10-C-meso- Me8[14]dieneN4·2HClO4 and their complexes of Ni(II) and Cu(II) are indeed different from literature reports. We could not get the isomer LA following the experimental methods described in the published paper and in our work. The melting point of LB is greater than that of LC and the melting point of LA is anticipated to be higher than that of LB. The solubility of LB in organic solvent is less than that of LC, while that of LA is expected to be lower compared to LB.
    The 1H NMR spectrum of LB shows four methyl resonances for eight methyl groups suggesting that LB is a symmetric molecule whereas the isomer LC shows eight methyl resonances indicating that LC is an asymmetric molecule. The 13C NMR spectrum of LB displayed only nine peaks due to pairwise equivalence of carbon atoms. In contrast, isomer LC displayed eighteen peaks of corresponding to eighteen nonequivalent carbon atoms indicating the absence of symmetry in the molecule.
    We have studied the X-ray diffractional analysis of isomeric LB, LC and their transition metal complexes.
    (1) Crystal structure of 3,10-C-meso-5,12-C-meso-Me8[14]aneN4 (LB).
    The molecule is located at an inversion. This determination indicates that the ring lies in a chair form with tetramine equatorial positions. The configurations of the four chiral carbon centers are 3S, 5S, 10R and 12R. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, and have an axial orientation. In addition, the methyl groups in 5S and 12R are also disposed on opposite sides of the macrocyclic plane, and have an equatorial orientation.
    (2) Crystal structure of 3,10-C-meso-5,12-C-rac-Me8[14]aneN4 (LC)
    The compound has a butterfly structure. The configurations of the four chiral carbon centers are 3S, 5S, 10R and 12S. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, and have an axial orientation. On the other side, the methyl groups in 5S and 12S are disposed on the same sides of the macrocyclic plane, and have an equatorial orientation.
    (3) Crystal structure of [CuLB(H2O)2](ClO4)2
    The molecule is located at an inversion. The compound is a six-coordinated octahedral complex with four N atoms of the macrocyclic ligand in the equatorial positions and two axial water O atoms in the trans axial positions; it belongs to the “4 + 2” type with four stronger Ni-N and two weaker Ni-O. The ligand is in its most stable, planar configuration with both the six-membered rings in chair forms and both the five-membered rings in gauche forms. The configurations of the four chiral nitrogen centers are 1R, 4S, 8S and 11R. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, and have an axial orientation. The methyl groups in 5S and 12S are also disposed on opposite sides of the macrocyclic plane, and have an equatorial orientation.
    (4) Crystal structure of [CuLC(ClO4)2]
    The compound is a six-coordinated octahedral complex with four N atoms of the macrocyclic ligand in the equatorial positions and two axial perchlorate O atoms in the trans axial positions; it belongs to the “5 + 1” type with four stronger Ni-N bounds, one stronger Cu(1)-O(3) and one weaker Cu(1)-O(6). The ligand consists of both the six-membered rings in chair forms and both the five-membered rings in gauche forms. The configurations of the four chiral nitrogen centers are 1S, 4R, 8R and 11S. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, and have an axial orientation. On the other hand, the methyl groups in 5S and 12S are disposed on the same sides of the macrocyclic plane, which the methyl group in 5S has an equatorial orientation and the methyl group in 12S has an axial orientation.
    (5) Crystal structure of [NiLB](ClO4)2
    The compound is a four-coordinated square planar complex with both the six-membered rings in chair forms and both the five-membered rings in gauche forms. The configurations of the four chiral nitrogen centers are 1R, 4S, 8S and 11R. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, and have an axial orientation. The methyl groups in 5S and 12S are also disposed on opposite sides of the macrocyclic plane, and have an equatorial orientation.
    (6) Crystal structure of [NiLC](ClO4)2
    The compound is a four-coordinated distorted planar complex with two six-membered rings-one in a chair form and the other in a twist-boat form, and two five-membered rings-one of which is in a gauche form and the other in an eclipsed form. The configurations of the four chiral nitrogen centers are 1S, 4R, 8S and 11S. The methyl groups in 3S and 10R are disposed on opposite sides of the macrocyclic plane, in which the methyl group in 3S has an equatorial orientation and the methyl group in 5S has an axial orientation. On the other side, the methyl groups in 5S and 12S are disposed on the same sides of the macrocyclic plane, in which the methyl group in 5S has an axial orientation and the methyl group in 12S has an equatorial orientation.
    Ni(II) complexes with the tetraaza-macrocyclic ligands exist in aqueous solution as an equilibrium mixture of cis, trans, and planar species. The distribution ratios of the three species are related to temperature, ionic strength, pH value, and steric effect, etc. The blue-to-yellow reactions were carried out with a UV-vis spectrophotometer. The results of spectrophotometric studies indicate that the proportion of planar species increases by either an increase in temperature or by an increase of ionic strength. In addition, the proportion of planar species also increases by an increase of the number of methyl groups on the macrocyclic ligand. Furthermore, the axial methyl groups contribute to raise the standard equilibrium constant, ΔHo and ΔSo. This may be due to the steric effect and the distorted structure. In conclusion, [13]aneN4 provide the best fit cavity size for a square-planar Ni(II) complex. The order of the values of V (d-d) for square-planar Ni(I1) complexes is [13]aneN4 > [12]aneN4 > [14]aneN4 > [15]aneN4.
    In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetramine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11- tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. The proposed mechanism is a free-base catalyzed pathway because the metal-bound hydroxide ion cannot form a hydrogen-bonded chelate ring with the adjacent sec-NH。Furthermore, the kinetic data satisfactorily fits as the rate law, R = kOH[OH-][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 ´ 103 dm3 mol-1 s-1 at 25.0 ± 0.1 oC with I = 0.10 mol dm-3 (NaClO4). The large ΔH¹, 61.7 ± 3.2 kJ mol-1, and the large positive ΔS¹, 30.2 ± 10.8 J K-1 mol-1, strongly support a free-base-catalyzed mechanism for the reaction. On the other hand, the coordinated-base-catalyzed pathway results in a small ΔH¹ and a large negative ΔS¹ for cis-folded Ni(II) complexes of [13]aneN4, cyclam, C-meso-5,12-Me2cyclam, and C-rac-5,12-Me2cyclam. In higher base media, the kinetic studies were carried out by using a stopped-flow spectrophotometer and the resulting kinetic data provide different rate constants which are functions of ionic strength. This phenomenon gives good evidence for a free-base-catalyzed mechanism.

    中文摘要 ……………………………………………………… I Abstract ……………………………………………………… V 謝誌 ………………………………………………………… VI 目錄 ………………………………………………………… VII 表目錄 ………………………………………………………… X 圖目錄 ……………………………………………………… XIV 第一章 緒論…………………………………………………… 1 第二章 四胺基大環配位子及其過渡金屬錯合之合成……… 18 一、前言……………………………………………… 18 二、藥品與溶劑……………………………………… 19 三、儀器設備………………………………………… 19 四、四胺基大環配位子之合成……………………… 20 五、鎳(II)及銅(II)金屬錯合物之合成…………… 31 第三章 3-10-C-meso-Me8[14]aneN4配位子之異構物分離純化及其鎳(II)、銅(II)錯合物之結構鑑定…………………………… 36 一、前言……………………………………………… 36 二、實驗結果與討論………………………………… 44 (一)合成結果……………………………………… 44 (二)熔點測定……………………………………… 45 (三)1H NMR與13C NMR之研究…………………… 45 (四)LB、LC在質譜儀中之斷裂片研究…………… 49 (五)LB、LC及其銅(II)、鎳(II)錯合物之晶體結構探 討……………………………………… 51 三、結論………………………………………………… 84 四、實驗部分…………………………………………… 87 (一)試藥與溶劑………………………………… 87 (二)儀器設備…………………………………… 87 第四章 八面體與方型平面結構之熱力學研究……………… 88 一、前言………………………………………………… 88 二、實驗結果…………………………………………… 91 三、討論………………………………………………… 99 (一)離子強度效應……………………………… 99 (二)溫度效應…………………………………… 99 (三)大環配位子環上取代基於水溶液中對平衡反應之影響………………………………… 99 (四)從電子光譜中探討錯合物結構中Ni-N鍵之作用……………………………………… 104 四、結論………………………………………………… 105 五、實驗部分…………………………………………… 106 (一)試藥與溶劑………………………………… 106 (二)儀器設備…………………………………… 106 (三)實驗方法…………………………………… 106 第五章 鹼催化cis-[Ni(isocyclam)(H2O)2]2+之不對稱氮中心反轉反應………………………………………………… 108 一、前言………………………………………………… 108 二、實驗結果…………………………………………… 114 (一)錯合物之合成……………………………… 114 (二)不對稱氮中心反轉反應之動力學測量…… 115 三、討論………………………………………………… 145 (一)Ni(II)錯合物之結構分析…………………… 145 (二)在低OH-濃度水溶液中之反應速率式與反應機構……………………………………… 165 (三)在高OH-濃度水溶液中之反應反應速率式與反應機構………………………………… 178 四、結論……………………………………………… 183 五、實驗部分………………………………………… 184 (一)試藥與溶劑………………………………… 184 (二)儀器設備…………………………………… 184 (三)不對稱氮中心反轉反應之動力學測量…… 184 第六章 總結………………………………………………… 187 參考文獻 …………………………………………………… 188 附錄一 ……………………………………………………… 198 附錄二 ………………………………………………………… 223

    1. Moser, F. H.; Thomas, A. L., J. Chem. Educ. 1964, 41, 245.
    2. Wang, J. H. Acc. Chem. Res. 1970, 1, 90.
    3. Smith, E. L. “Vitamib B12”, 3rd. ed. Methneu : Lodaon,1965.
    4. Mark,G. S. “Heme and Chlorophylls”;van Norstrand :Lodon, 1975.
    5. Melson, G. A., Ed. Coordination chemistry of Marocyclic Compounds ; Plenum: New York,1979.
    6. Lindoy, L. F., The Chemistry of Marcrocyclic Ligand Complexes; Cambridge University Press: Cambridge.1989.
    7. Jones, D. R.; Lindoy, L. F.; Sargeson, A. M. J. Am. Chem. Soc. 1983, 105, 7327.
    8. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987, 87, 1107.
    9. Chin, J.; Zou, X. J. Am. Chem. Soc. 1988, 110, 223.
    10. Connolly, J. A.; Banaszczyk, M.; Hynes, R. C.; Chin, J. Inorg. Chem. 1994, 33, 665.
    11. Spitzangle, L. A.; Marion, C. A. and Kasina, S. J. Nucl. Med. 1981, 22(Abstr.), 13.
    12. Kaden, T. A. Top. Curr. Chem. 1984, 121, 157.
    13. Bernhardt, P. V.; Lawrance, G. A. Coord. Chem. Rev. 1990, 104, 297.
    14. Kaden, T. A. Pure & Appl. Chem. 1993, 65, 1477.
    15. Curtis,N. F. Coord. Chem. Rev. 1968, 3, 3.
    16. Thomposn, M. C.; Busch, D. H. J. Am. Chem. Soc.1964, 86, 3651.
    17. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
    18. Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 651.
    19. Colquhoun, H. M.; Stoddart, J. F.; William, D. J. Angew. Chem. Int. Ed. Engl. 1986, 25, 487.
    20. Bianchi, A.; Micheloni, M.; Paoletti, P. Chem. Rev. 1991, 110, 17.
    21. Hiraoka, M. (Editor) Crown Ethers and Analogous Compounds Elsevier, 1992.
    22. Kimura, E. Tetrahedron 1992, 48, 6175.
    23. Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1969, 91, 6540.
    24. Fabbrizzi, L.; Paoletti, P.; Lever, A. B. P. Inorg. Chem. 1976, 15, 1502.
    25. Lin, C. T.; Rorabacher, D. B.; Cayley, G. R.; Margerum, D. W. Inorg. Chem. 1975, 14, 919.
    26. Hay, R. W.; Clark, C. R., J. Chem. Soc.Dalton Trans. 1977, 1148.
    27. Margerum, G. W.; Cayley, G. R.; Weatherburn, D. C., Pageakopt A. “Coordination Chemistry”, ACS Monograph 174; American Chemistry Society; Washington D. C. 1978, Vol. 2, p. 1-220.
    28. Busch, D. H.; Farmery, F.; Goedken, V. ; Katovic, V.; Melnyk, A. G.; Sperati, C. R.; Tokel, N. Adv. Chem. Ser. 1971, 100, 44.
    29. Olson, D. C.; Vasilevskis, J. Inorg. Chem. 1969, 8, 1611.
    30. Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 351.
    31. Izatt, R. M., Eatough, D. J., Christensen, J. J., Struct, J. J. Bonding(Berlin). 1973, 16, 161.
    32. Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600.
    33. Watkins, D. D.; Jr. Riley, D. P.; Stone, J. A.; Busch, D. H. Inorg. Chem. 1976, 15, 387.
    34. Hing, Y. L.; Martin, Y.; S. Jackels, C. S. C.; Tait, A. M.; Busch, D. H. J. Am .Chem. Soc. 1977, 99, 4029.
    35. Hinz, E. P.; Margerum, D. W. Inorg. Chem. 1974, 13, 2941.
    36. Busch, D. H. Rec. Chem Prog. 1964, 25, 107.
    37. Busch, D. H. Helv. Chim. Acte. 1967, 50, 174.
    38. Warn, L. G.; Bisch, D. H. J. Am. Chem. Soc. 1969, 91, 4092.
    39. Dei, A. Inorg. Chem. 1979, 18, 891.
    40. Kolinsky, R. A.; Korybutm, D. B. Inorg. Chim. Acte. 1975, 14, 237.
    41. Lee, C.-S.; Wu, S.-Y.; Chung, C.-S. Inorg. Chem. 1984, 23, 1298.
    42. Buxtorf, R.; Raden, T. A. Helv. Chim. Acte. 1974, , 1035.
    43. Wagner, F.; Barafield, E. K. Inorg. Chem. 1976, 15, 408.
    44. Wagner, F.; Barafield, E. K. Inorg. Chem. 1973, 12, 2435.
    45. Curtis, N. F. J. Chem. Soc. 1964, 2644.
    46. Bryan, P. S.; Dabrowiak, J. C. Inorg. Chem. 1975, 14, 296.
    47. Curtis, N. F.; Milestone, Aust. J. Chem. 1975, 28, 275.
    48. Hay, R. W.; Lawrence, G. A. J. Chem. Soc. Dalton Trans. 1975, 1466.
    49. Martin, J. G.; Cumming, S. C. Inorg. Chem. 1973, 12, 1477.
    50. Cook, D. F.; Curtis, N. F.; Hay, R. W. J. Chem. Soc. Dalton Trans. 1973, 1160.
    51. Palmer, J. M.; Papaconstantinou, E.; Endicott, J. F. Inorg. Chem. 1969, 8, 1516.
    52. Curtis, Y. M.; Curtis, N. F. Aust. J. Chem. 1966, 16, 609.
    53. Blight, M. M.; Curtis, N. F. J. Chem. Soc. 1962, 3016.
    54. Curtis, N. F. J. Chem. Soc. Dalton Trans, 1973, 863.
    55. Bhattacharya, P. K. J. Inorg. Chem. 1981, 43, 41.
    56. Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.
    57. Martin, L. Y.; Serati, C. R.; Busch, D. H. J. Am. Chem. Soc. 1977, 99, 2968.
    58. Tang, S. C.; Koch, S.; Weinstein, G. N.; Lane, R. W.; Holm, R. H., Inorg. Chem. 1973, 12, 2589.
    59. Koch, S.; Holm, R. H.; Frankel, R. B. J. Am. Chem. Soc. 1975, 97, 6714.
    60. Honeybourne, C. L. Inorg. Nucl. Chem. Lett. 1975, 11, 191.
    61. Lindoy, L. F.; Busch, D. H. Inorg.Chem. 1974, 13, 2494.
    62. Thomposn, M. C.; Busch, D. H. J. Am. Chem. Soc.1964, 86, 3651.
    63. Curtis, N. F.; Swan, D. A.; Water, T. N. and Maxwell, I. E. J. Am. Chem. Soc. 1969, 91, 4588.
    64. Lukyanenko, N. G.; Basok, S. S.; Filonova, L. K. J. Org. Chem. USSR, 1988, 24, 1562.
    65. Hay, R. W.; Kinsman, B.; Smith, C. I. Polyhedron 1995, 14, 1245.
    66. Pasternack, R. F.; Robic, N.; Bied-Charreton, C.; Perree-Fauvet, M.; Verchere-Beaur, C.; Salmon, L.; Gaudemer, A. Tetrahedron Lett. 1990, 33, 4739.
    67. Little, R. G.; Anton, J. A.; Loach, P. A.; Ibers, J. A. J. Heterocyclic Chem. 1975, 12, 343.
    68. Tahirov,T. H.; Lu, T.-H.; Lan, W.-J.; Lai, C.-Y.; Chi, T.-Y.; Chung, C.-S. Acta Cryst. 1995, C51, 1531.
    69. Tait, A. M.; Busch, D. H. Inorg. Nucl. Chem. Letters 1972, 8, 491.
    70. Ito, T.; Busch, D. H. Inorg. Chem. 1974, 13, 1770.
    71. Lee, T.-J.; Lee, T.-Y.; Juang, W.-B.; Chung, C.-S. Acta Cryst. 1985, C41, 1596.
    72. Bembi, R.; Sondhi, S. M.; Singh, A. K.; Jhanji, A. K.; Roy, T. G.; Lown, J. W.; Ball, R. G. Bull. Chem. Soc. Jpn. 1989, 62, 3701.
    73. Bembi, R.; Roy, T. G.; Jhanji, A. K.; Maheswari, A. J. Chem. Soc. Dalton Trans. 1990, 3531.
    74. Ferguson, G.; Lough, A. J.; Bembi, R. Acta Cryst. 1990, C46, 213.
    75. Bembi, R.; Drew, M. G. B.; Singh, R.; Roy, T. G. Inorg. Chem. 1991, 30, 1403.
    76. Hazari, S. K. S; Roy, T. G.; Dey, B. K.; Das, S. C.; Tiekink, E. R. T. Metal-Based Drugs 1997, 4, 255.
    77. Hay, R. W.; Fraser, I. Polyhedron 1998, 17, 1931.
    78. Choi, K.-Y,; Chun, K. M.; Suh, I.-H. Inorg. Chem. Comm. 1999, 2 210.
    79. Roy, T. G. J. Bangl. Chem. Soc. 2002, 15, 23.
    80. Roy, T. G.; Bembi, R.; Hazari, S. K. S.; Dey, B. K.; Acharjee, T. K.; Horn, E.; Tiekink, E. R. T. J. Coord. Chem. 2002, 55, 853.
    81. Holliger, C.; Pierik, A. J.; Reijersa, E. J.; Hagen, W. R. J. Am. Chem. Soc. 1993, 115, 5651.
    82. Furenlid, L. K.; Renner, M.W.; Fajer, J. Am. Chem. Soc. 1990, 112, 8987.
    83. Sacconi, L. Trans. Met. Chem. 1968, 4, 199.
    84. Wilkins, R. G.; Yelin, R.; Margerum, D. W.; Weatherburn, D. C. J. Am. Chem. Soc. 1969, 91, 4326.
    85. Hinz, F. P.; Margerum, D. W. Inorg. Chem. 1974, 15, 1370.
    86. inz, F. P.; Margerum, D. W. Inorg. Chem. 1972, 13, 2941.
    87. Billo, E. J. Inorg. Chem. 1984, 23, 2223.
    88. Fabbrizzi, L. Inorg. Chem. 1980, 19, 2667.
    89. Sabatini, L.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438.
    90. Passman, W. H.; Swisher, R. G.; Blinn, E. L. Inorg. Chem. 1980, 19, 1101.
    91. Anichini, A.; Fabbrizzi, L.; Paoletti, P. Inorg. Chim. Acta. 1977, 24, L21.
    92. Fabbrizzi, L.; Paoletti, P.; Clay, R. M. Inorg. Chem. 1978, 17, 1042.
    93. Martin, L. Y.; DeHayes, L. J.; Zompa, L. J.; Busch, D. H.; J. Am. Chem. Soc. 1974, 96, 4046.
    94. Bosnich, B.; Mason, R.; Pauling, P.; Robertson, G. B.; Tobe, M. L. J. Chem. Soc., Chem. Commun. 1965, 97.
    95. Mcpherson, A.; Rossmann, M. G.; Margerum, D. W.; James, M. R. J. Coord. Chem. 1971, 1, 39.
    96. Nyberg, S. C.; Wood, J. S. Inorg. Chem. 1964, 3, 468.
    97. Water, J. M.; White, K. R. J. Inorg. Nucl. Chem. 1972, 34, 155.
    98. Smierciak, R.; Passariello, J.; Blinn, E. L. Inorg. Chem. 1977, 16, 646.
    99. Fabbrizzi, L.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1980, 19, 535.
    100. Sugimoto, M.; Nonoyama, M.; Ito, T.; Fujita, J. Inorg. Chem. 1983, 22, 950.
    101. Ciampolini, M; Fabbrizzi, L.; Liccheli, M.; Perotti, F.; Pezzini, F.; Poggi, A. Inorg. Chem. 1986, 25, 4131.
    102. Sabatini, L.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438.
    103. 黃慶順Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 2000.
    104. Hay, R. W.; Jeragh, B.; Ferguson, G.; Kaitner, B.; Ruhl, B. L. J. Chem. Soc., Dalton Trans. 1982, 1531.
    105. Fabbrizzi, L. J. Chem. Soc., Dalton Trans. 1979, 1857.
    106. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. Inorg. Chem. 1966, 6, 1032
    107. Buckingham, D. A.; Marzilli L. G.; Sargeson, A. M. J. Am. Chem. Soc. 1967, 89, 3428.
    108. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. Inorg. Chem. 1968, 7, 915.
    109. Halpen, B. A.; Sargeson, M.; Turnbull, K. B. J. Am. Chem. Soc. 1966, 88, 4630.
    110. Erickson, L. E.; Dappen, A. J.; Uhlenhopp, J. C. J. Am. Chem. Soc. 1969, 91, 2510.
    111. Erickson, L. E.; Fritz, H. L.; May, R. J.; Wright, D. A. J. Am. Chem. Soc. 1969, 91, 2513.
    112. Goddard, J. B.; Basolo, F. Inorg. Chem. 1969, 90, 2293.
    113. Haake, P.; Turley, P. C. J. Am. Chem. Soc. 1968, 90, 2293.
    114. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. J. Am. Chem. Soc. 1969, 91, 5227.
    115. Buckingham, D. A.; Dwyer, M.; Sargeson, A. M.; Watson, K. J. Acta. Chem. Scand. 1972, 26, 2813.
    116. Pitner, T. P.; Martin, R. B. J. Am. Chem. Soc. 1971, 93, 4400.
    117. Chung, C.-S. Ph.D. dissertation, Purdue University. 1974.
    118. Liang, B. F.; Margerum, D. W.; Chung, C.-S. Inorg. Chem. 1979, 18, 2001.
    119. Liang, B. F. Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 1980.
    120. Liang, B. F.; Chung, C. S. Inorg. Chem. 1980, 19, 1867.
    121. Liang, B. F.; Chung, C.-S. Inorg. Chem. 1981, 20, 2152.
    122. Billo, E. J. Inorg. Chem. 1981, 20, 4019.
    123. Hay, R. W. M.; Ali, A. Inorg. Chim. Acta. 1985, 103, 23.
    124. Hay, R. W.; Pujari, M. P. J. Chem. Soc., Dalton Trans. 1986, 1485.
    125. Hay, R. W.; Chen, Y.-Q. Inorg. Chim. Acta. 1991, 180, 147.
    126. Hay, R. W.; Govan, N. Transition Met. Chem. 1992, 17, 119.
    127. Linnet, N. “pH Measurements in Theory and Practice” 1st edition, Radiometer A/S; Copenhagen, Denmark, 1970, p. 104.
    128. Satake, Y.; Ihara, Y.; Senda, H.; Suzuki, M.; Uehara, A. Inorg. Chem. 1992, 31, 3248.
    129. Martin, A. M.; Grant,K. J.; Billo, E. J. Inorg. Chem. 1986, 25, 4904.
    130. Spetnagel,W. J. Ph.D. Dissertation, New Mexico State University, 1973.
    131. Barefield, E. K.; Bianchi, A.; Billo, E. J.; Connolly, P. J.; Paoletti, P.; Summers, J. S.; Derveer, D. G. V. Inorg. Chem. 1986, 25, 4197.
    132. Tanirov, T. H.; Lu, T.-H.; Chen, B. H.; Chi, T.-Y.; Chung, C.-S. Acta. Cryst. 1994, C50, 1686.
    133. Billo, E. J.; Inorg. Chim. Acta. 1995, 230, 19.
    134. 林超鼎, Master D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 1980.
    135. Domasevich, K.V.; Ponomareva, V. V.; Skopenko, V. V.; Zan, H. Siler J Zhurnal Neorganicheskoi Khimii, 1997, 42, 1128-1133.
    136. Boeyens, J. C. A. Acta. Cryst. 1983, C39, 846.
    137. Krajewski, J.; Urbanczyk-Lipkowka, Z.; Gluzinski, P. Bull. Acad. Pol. Sci., Ser. Sci. Chum. 1977, 25, 853.
    138. Pell,R. J.; Dodgen, H. W.; Hunt, J. P. Inorg. Chem. 1983, 22, 529.
    139. Lee, C.-S.; Chung, C.-S. Inorg. Chim. Acta. 1984, 23, 639.
    140. Vitiello, J. D.; Billo, E. J. Inorg. Chem. 1980, 19, 3477.
    141. Beatti, J. K.; Kelso, M. T.; Moody, W. E.; Tregloan, P. A. Inorg. Chem. 1985, 24, 415.
    142. Morstyn, G.; Kaye, A. H. Phototherapy of Cancer; Harwood Academic: Switzerland, 1990.
    143. Mitchell, J. B.; Cook, J. A.; Russo, A. In Phototherapy of Cancer; Morstyn, G.; Kaye, A. H., Eds.; Harwood Academic: Switzerland, 1990, Chapter 1.
    144. Cutler, P. D.; Schwara, S. W.; Anderson, C. J.; Connett, J. M.; Welch, M. J.; Philpott, G. W.; Siegel, B. A. J. Nucl. Med. 1995, 36, 2363.
    145. Shen, S.; DeNardo, G. L.; DeNardo, S. J.; DeNardo, D. A. J. Nucl. Med. 1996, 37, 146.
    146. DeNardo, G. L.; Kukis, D. L.; Shen, S.; DeNardo, S. J. J. Nucl. Med. 1996, 37, 302.
    147. Zamora, P. O.; Mercer-Smith, J. A.; Marker, M. J.; Schulte, L. D.; Rhodes, B. A. Nucl. Med. Biol. 1992, 19, 797.
    148. Roberts, J. C.; Figard, S. D.; Mercer-Smith, J. A.; Schulte, L. D.; Rhodes, B. A. J. Immunol. Methods. 1987, 105, 153.
    149. Desphande, S. V.; DeNardo, S. J.; Meares, C. F.; McCall, M. J.; Adams, G. P.; DeNardo, G. L. J. Nucl. Med. 1988, 29, 217.
    150. Roberts, J. C.; Newmyer, S. L.; Mercer-Smith, J. A.; Schreyer, S. A.; Lavallee, D. K. Appl. Radiat. Isot. 1989, 40, 775.
    151. Lavallee, D. K. Coordn. Chem. Revs. 1985, 61, 55.
    152. Jr., C. C.; Hambright, P. J. Am. Chem. Soc. 1969, 91, 4195.
    153. Turay, J.; Hambright, P. Inorg. Chem. 1980, 19, 562.
    154. Shamin, A.; Hambright, P. Inorg. Chem. 1983, 22, 694.
    155. Funahashi, S.; Yamaguchi, Y.; Tanaka, M. Inorg. Chem. 1984, 23, 2249.
    156. Pasternack, R. F.; Vogel, G. C.; Skowronek, C. A.; Harris, R. K.; Miller, J. G. Inorg. Chem. 1981, 20, 3763.
    157. Fleischer, E. B.; Wang, J. H. J. Am. Chem. Soc. 1960, 82, 3498.
    158. Chen, B. M. L.; Tulinsky, A. J. Am. Chem. Soc. 1972, 94, 4144.
    159. Funahashi, S.; Yamaguchi, Y.; Tanaka, M. Bull. Chem. Soc. Jpn. 1984, 57, 204.
    160. Bain-Ackerman, M. J.; Lavallee, D. K. Inorg. Chem. 1979, 18, 3358.
    161. Lavallee, D. K.; Onady, G. M. Inorg. Chem. 1981, 20, 907.
    162. Turay, J. Inorg. Chim. Acta. 1981, 53, L147.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE