研究生: |
簡瑋 Chien, Wei |
---|---|
論文名稱: |
利用Husimi Function分析光學系統穩態 Stationary states analysis in optical cavities using Husimi Function |
指導教授: |
李瑞光
Lee, Ray-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 相空間 、量子混沌 、有限元素法 |
外文關鍵詞: | phase space, quantum chaos, Finite Element Method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文從亥姆霍茲方程式( Helmholtz Equation)出發,運用有限元素法解出系統穩態波函數,再輸入Husimi Function構建出相空間的資訊。為了能提供更直觀的物理感覺,我們以半古典的方法將向空間分布函數投影到邊界上得到龐卡萊截面(Poincare Section)上的機率密度,澄清其物理意義。基於這些結果,我們研究光學系統中的穩態解。
We start from the Helmholtz Equation, using Finite-Element Method to solve the stationary solutions ,and construct the information in phase space using Husimi function . To get more direct physical insights , we map the phase space distribution on the Poincare Section of Surface ,and give the handled phase space distribution physical interpretations . Finally, we use it to get more physical insights in some special systems. Based on these results ,we study the stationary states in optical cavities .
[1] Jens U. N¨ockel & Richard K. Chang , ’’2-d Microcavities: Theory and Experiments’’, Academic Press ,Cavity-Enhanced Spectroscopies edited by Roger D. van Zee and John P. Looney , a volume of Experimental Methods in the Physical Sciences,(2002)
[2] H. E. Tureci, H. G. L. Schwefel, and A. Douglas Stone , ‘’Modes of wave-chaotic dielectric resonators’’, Progress In Optics, (2005)
[3]Martina Hentshel and Klaus Richter ,’’Quantum chaos in optical systems: The annular billiard ’’, Phys. Rev. E, 66 ,056207 (2002)
[4] Jan Wiersig, ‘’Boundary element method for resonances in dielectric microcavities’’, Pure Appl. Opt. 5 ,53, (2003)
[5] Arnd B¨acker1 ,’’Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems’’ LECTURE NOTES IN PHYSICS,NEW YORK THEN BERLIN-, (2003)
[6] L. Rayleigh , ‘’On the dynamical theory of gratings’’, Proc. Roy. Soc., A79, p.399, (1907)
[7] Martin C. Gutzwiller ,’’Chaos in Classical and Quantum Mechanics’’, Springer-Verlag , (1999)
[8] Kerry Vahala ,’’Optical Microcavities’’ , Advanced Series in Applied Physics , 5, p.415 ,World Scientific ,(2004)
[9] A. Bäcker, S. Fürstberger and R. Schubert ,’’Poincaré Husimi representation of eigenstates in quantum billiards’’, Phys. Rev. E 70, 036204 (2004)
[10] 劉秉正,’’非線性動力學與混沌基礎’’ , p.160,徐氏文教基金會,(2006)
[11] Bruno Crespi, Gabriel Perez ,and Shau-Jin Chang ,’’Quantum poincare section for 2D billiard’’, Phys. Rev. E 47, 986 ,(1993)
[12] M. Hentschel1, H. Schomerus1 and R. Schubert,
‘’Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond’’, Europhys. Lett., 62 (5), p.636, (2003)
[13]’’ Comsol Multiphysics User's Guide’’ ,2007
http://www.comsol.com/
[14] John Leonidas Volakis , Arindam Chatterjee ,Leo C. Kempel,’’Finite element method for electromagnetics : antennas, microwave circuits, and scattering applications’’ , p.93 , IEEE Press,(1998)
[15] William B J Zimmerman,’’Multiphysics Modelling with Finite Element Methods’’, World Scientific , (2006)
[16] Rechard J. Radke, ’’A Matlab Implementation of the implicitly restarted Arnoldi Method for solving large-scale eigenvalue problem’’, (1996)
[17] Jan Wiersig ,’’Unidirectional light emission from high-Q modes in optical microcavities’’, Phys. Rev. A 73, 031802 ,(2008)
[18] Steven Lansel ,’’A graphical interface to simulate classical billiard systems ‘’,School of Electrical and Computer Engineering, (2004)
http://www.math.gatech.edu/ mason/research/new.html
[19] Takahisa Harayama and Peter Davis , Nonlinear Whispering Gallery Modes , Phys. Rev. Lett. 82, 19 (1999)