簡易檢索 / 詳目顯示

研究生: 簡瑋
Chien, Wei
論文名稱: 利用Husimi Function分析光學系統穩態
Stationary states analysis in optical cavities using Husimi Function
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 55
中文關鍵詞: 相空間量子混沌有限元素法
外文關鍵詞: phase space, quantum chaos, Finite Element Method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文從亥姆霍茲方程式( Helmholtz Equation)出發,運用有限元素法解出系統穩態波函數,再輸入Husimi Function構建出相空間的資訊。為了能提供更直觀的物理感覺,我們以半古典的方法將向空間分布函數投影到邊界上得到龐卡萊截面(Poincare Section)上的機率密度,澄清其物理意義。基於這些結果,我們研究光學系統中的穩態解。


    We start from the Helmholtz Equation, using Finite-Element Method to solve the stationary solutions ,and construct the information in phase space using Husimi function . To get more direct physical insights , we map the phase space distribution on the Poincare Section of Surface ,and give the handled phase space distribution physical interpretations . Finally, we use it to get more physical insights in some special systems. Based on these results ,we study the stationary states in optical cavities .

    Chapter 1 研究動機 1 1.1求解Helmohotz’s Equation 1 1.2相空間分布 2 1.3研究動機與論文大綱: 3 Chapter 2 Husimi Function 4 2.1定義Husimi Function 4 2.2將Husimi Function on Poincare Section投影到邊界 7 2.3 Poincare Section上的機率密度表示: 14 Chapter 3 數值方法 17 3.1有限元素法簡介: 17 3.2 Closed System撞球台系統 20 3.3 2D 散射問題 22 Chapter 4 Cases Study 26 4.1 Closed circular billiard-數值方法討論 26 4.2 Open circular billiard-數值方法討論: 33 4.3 Circular hole Billiard-古典與量子的對應 41 4.4單方向性高Q值雷射設計(Unidirectional light emission from high-Q modes) 44 結論與未來方向: 50 參考文獻: 51

    [1] Jens U. N¨ockel & Richard K. Chang , ’’2-d Microcavities: Theory and Experiments’’, Academic Press ,Cavity-Enhanced Spectroscopies edited by Roger D. van Zee and John P. Looney , a volume of Experimental Methods in the Physical Sciences,(2002)

    [2] H. E. Tureci, H. G. L. Schwefel, and A. Douglas Stone , ‘’Modes of wave-chaotic dielectric resonators’’, Progress In Optics, (2005)

    [3]Martina Hentshel and Klaus Richter ,’’Quantum chaos in optical systems: The annular billiard ’’, Phys. Rev. E, 66 ,056207 (2002)

    [4] Jan Wiersig, ‘’Boundary element method for resonances in dielectric microcavities’’, Pure Appl. Opt. 5 ,53, (2003)

    [5] Arnd B¨acker1 ,’’Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems’’ LECTURE NOTES IN PHYSICS,NEW YORK THEN BERLIN-, (2003)

    [6] L. Rayleigh , ‘’On the dynamical theory of gratings’’, Proc. Roy. Soc., A79, p.399, (1907)

    [7] Martin C. Gutzwiller ,’’Chaos in Classical and Quantum Mechanics’’, Springer-Verlag , (1999)

    [8] Kerry Vahala ,’’Optical Microcavities’’ , Advanced Series in Applied Physics , 5, p.415 ,World Scientific ,(2004)

    [9] A. Bäcker, S. Fürstberger and R. Schubert ,’’Poincaré Husimi representation of eigenstates in quantum billiards’’, Phys. Rev. E 70, 036204 (2004)

    [10] 劉秉正,’’非線性動力學與混沌基礎’’ , p.160,徐氏文教基金會,(2006)

    [11] Bruno Crespi, Gabriel Perez ,and Shau-Jin Chang ,’’Quantum poincare section for 2D billiard’’, Phys. Rev. E 47, 986 ,(1993)

    [12] M. Hentschel1, H. Schomerus1 and R. Schubert,
    ‘’Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond’’, Europhys. Lett., 62 (5), p.636, (2003)

    [13]’’ Comsol Multiphysics User's Guide’’ ,2007
    http://www.comsol.com/

    [14] John Leonidas Volakis , Arindam Chatterjee ,Leo C. Kempel,’’Finite element method for electromagnetics : antennas, microwave circuits, and scattering applications’’ , p.93 , IEEE Press,(1998)

    [15] William B J Zimmerman,’’Multiphysics Modelling with Finite Element Methods’’, World Scientific , (2006)

    [16] Rechard J. Radke, ’’A Matlab Implementation of the implicitly restarted Arnoldi Method for solving large-scale eigenvalue problem’’, (1996)

    [17] Jan Wiersig ,’’Unidirectional light emission from high-Q modes in optical microcavities’’, Phys. Rev. A 73, 031802 ,(2008)

    [18] Steven Lansel ,’’A graphical interface to simulate classical billiard systems ‘’,School of Electrical and Computer Engineering, (2004)
    http://www.math.gatech.edu/ mason/research/new.html

    [19] Takahisa Harayama and Peter Davis , Nonlinear Whispering Gallery Modes , Phys. Rev. Lett. 82, 19 (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE