簡易檢索 / 詳目顯示

研究生: 徐鈺婷
Hsu, Yu-Ting
論文名稱: 二維大面積太陽能電池之模擬與研究
The modeling of two-dimensional large-area solar cells
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 太陽能電池大面積金屬格線
外文關鍵詞: solar cells, large-area, metal grid
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著太陽電池走向大面積化,如何提升基板導電性是當前產學界努力的目標。目前最常使用的方式是利用金屬格線來降低基板阻值,藉由高密度的金屬格線降低整體電阻,以提升整體大面積太陽電池的元件效率。然而,金屬格線所造成的遮光效應,同時會使元件的照光區域減少而降低效率。因此,如何找出最適金屬格線圖樣以最佳化元件表現成為一項重要的議題。本篇論文即對金屬格線的圖樣做討論,提出一種新的圖樣,並建立一套可找出各種太陽電池之最佳金屬格線圖樣的模擬系統。
    本研究將以真實的小面積太陽電池數據為基礎,依據電路模型建立二維大面積太陽電池的結構,模擬搭配金屬格線之大面積太陽電池與串接式太陽電池情形,此外,亦探討金屬格線對不同材料與不同填充因子之大面積太陽電池影響,最後考慮金屬格線遮光因素,並對這些結果做分析與討論。本套模擬系統可針對各種太陽電池情況做模擬,找出最適合之金屬格線圖樣,可望在現今太陽電池產業中有很高的應用價值。


    The modeling of two-dimensional large-area solar cells
    Student:Yu-Ting Hsu Advisor:Prof. Sheng-Fu Horng
    Institute of Electronics Engineering
    National Tsing Hua University

    Abstract
    In this study, various grid patterns were investigated by a simulation method for optimization of efficiency. Since low conductivity of the large-area solar cells will result in poor device performance, introducing metal grid to reduce the resistance of the substrate has been widely used. However, it is very important to find out a proper grid pattern to optimize the conductivity and shading effect. In our research, we have investigated a new kind of metal grid pattern, and we also constructed a system to find the best metal grid pattern in various devices, which can be a reference in the PV industry.
    First, we build the simulation model of the large-area solar cell with metal grid by real small-area solar cell using the circuit model and the mathematical method. Then we discuss the effect of the grid pattern to the solar cells, and analyze the result from several factors which affecting the efficiency of the device, including the short-circuit current and fill factor of the small area solar cell in the ideal condition. Finally, the shadow effect is considered to approach a real case.

    Keyword:large-area, solar cells, metal grid

    摘要 I Abstract II 致謝 III 目錄 IV 第一章 元件原理 1 1.1 研究背景 1 1.1.1目前太陽電池發展現況 1 1.1.2 有機太陽電池發展現況 1 1.2 研究動機和方向 4 1.3 文獻探討 5 1.4 論文架構 9 第二章 元件原理 10 2.1 太陽電池基本原理 10 2.2 太陽電池基本參數 13 第三章 大面積太陽電池之模擬 18 3.1 模擬軟體簡介 18 3.2 模擬原理 18 3.2.1 元件結構及電路模型 18 3.2.2 推導基礎方程式 20 3.2.3 最大可容忍誤差值(Error)訂定 25 3.3原理驗證 26 3.3.1 程式正確性驗證 26 3.3.2 邏輯驗證 27 4.1 單側金屬線電極元件之探討 30 4.1.1 理想情況下之單側金屬線電極形狀探討 31 4.1.2 理想情況下之單側金屬線電極角度探討 33 4.1.3 非理想情況之單側金屬線電極角度探討 35 4.2 雙側金屬線電極探討 37 4.2.1 理想情況中雙側金屬線電極探討 38 4.2.2 非理想情況中應用於大面積太陽電池之金屬線電極探討 49 4.3串聯式大面積太陽電池之探討 51 4.3.1 理想情況之串聯式太陽電池探討 51 4.3.2非理想情況之串接式太陽電池探討 58 第五章 結論 60 參考文獻 61

    [1] 林明憲編著, 太陽電池技術入門(修訂版), 全華圖書股份有限公司, 2008
    [2] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power.” J. Appl. Phys. 25676(1954).
    [3] J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7%efficiency PERL cells on FZ substrates,” Prog. Photovolt.:Res. Appl.7, 471(1999).
    [4] K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16,4533(2004)
    [5] Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,” J. Mater. Res. , Vol. 19, No. 7, (2004).
    [6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
    [7] A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells,” Appl. Phys. Lett. 89, 213506 (2006).
    [8] T. Miyasaka and Y. Kijitori. J. Electrochem. Soc. 151, A1767 (2004)
    [9] C. J. Brabec, F. pandinger, ”Realization of Large Area Flexible Fullerene-Conjugate Polymer Photocells: A Route to Plastic Solar Cell,” Synthetic Metals 102, 861 (1999).
    [10] M. Al-Ibrahim, H. K. Roth, and S. Sensfuss. Appl. Phys. Lett. 85, 1481 (2004).
    [11] T. Miyasaka, M. Ikegami, Y. Kijitori. J. Electrochem. Soc. 154, A455 (2007).
    [12] Roland Steim, Stelios A. Choulis, Pavel Schilinsky, and Christoph J. Brabec. Appl. Phys. Lett. 92, 093303 (2008).
    [13] S. Choi, W. J. Potscavage, Jr., and B. Kippelena, “Area-scaling of organic solar cells,” JOURNAL OF APPLIED PHYSICS 106, 054507 (2009).
    [14] T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, L. Leenders, “Printable anodes for flexible organic solar cell modules,” Thin Solid Films 451 –452 (2004) 22–25.
    [15] M.F. Stuckings, A.W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Solar Energy Materials & Solar Cells 59 (1999) 233-242
    [16] 陳薇如著, 大面積有機太陽能電池之模擬與研究, 2009
    [17] K. Okada, H. Matsui, T. Kawashima, T. Ezure, N. Tanabe, “100 mm × 100 mm large-sized dye sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 193–198
    [18] D. K.onig*, G. Ebest, “New contact frame design for minimizing losses due to edge recombination and grid-induced shading,” Solar Energy Materials & Solar Cells 75 (2003) 381–386
    [19] P. Morvillo, E. Bobeico, F. Formisano, F. Roca, “Influence of metal grid patterns on the performance of silicon solar cells at different illumination levels,” Materials Science and Engineering B 159–160 (2009) 318–321
    [20] Ali Cheknanea, B. Benyoucef, J.-P. Charles, R. Zerdoumc, M. Trarid, “Minimization of the effect of the collecting grid in a solar cell based silicon,” Solar Energy Materials & Solar Cells 87 (2005) 557–565

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE