研究生: |
吳柄緯 Bing-Wei Wu |
---|---|
論文名稱: |
利用掃描穿隧顯微儀在金表面製造奈米結構 Fabricating Nanostructures on Au Surface by Scanning Tunneling Microscopy |
指導教授: |
羅榮立
Rong-Li Lo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 金 、奈米結構 、掃描穿隧顯微術 |
外文關鍵詞: | STM, Au, nanostructure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用電子掃描穿隧顯微儀(Scanning Tunneling Microscopy, STM)在金球的表面施加脈衝以製造奈米結構。我們選擇大氣下和Si oil兩種不同的環境和Au、PtIr兩種探針,並改變不同的參數來觀察對製造結構有什麼影響。
實驗結果顯示,脈衝電壓的大小和極性、施加脈衝的時間對製造奈米結構有比較大的影響。當針尖接地時,在表面上施加正電壓能夠製造出凹坑(pit)跟凸丘(mound),而負電壓只能製造出凸丘。而電壓越大做出結構的機率越大。而施加脈衝的時間越長,做出結構的機率越大,做出來的結構也越大。
By applying pulse voltage with STM, nanostructures can be fabricated on Au(111) surface on the Au ball. Various parameters were applied to fabricate different structures. Also, the influence of different kinds of tips and environments were discussed in our studies.
From the STM result, we confirmed that the amplitude and the polarity of the pulse voltages are the dominant factors in fabricating nanostructures. Mounds and pits can be made when applying positive pulse on the sample, while only mounds appear when applying negative pulse. The probability of producing nanostructures is proportional to the magnitude and the duration of the pulse voltages. The size of the structure is also proportional to the pulse duration.
[1] 白偉武,林更青 “掃描探針顯微術於表面形貌演化與動態研究之介紹”,
物理雙月刊, 二十五卷五期 (2003) 660
[2] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl.Phys.Lett. 40, (1982) 178
[3] M. Ringger,H.R. Hidber, R. Schlogel, P. Oelhafen, H.J. Gntherodt,
Appl.Phys.Lett. 46, (1985) 832
[4] R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber, Nature 325, (1987) 419
[5] D.M. Eigler, E.K. Schweizer, Nature 344, (1990) 524
[6] H.J. Mamin, P.H. Guethner, and D. Rugar, Phys. Rev. Lett. 65,(1990) 2418
[7] H.J. Mamin, S. Chiang, H. Birk, P.H. Guethner,
J. Vac. Sci. Technol. B9,(1991) 1398
[8] C.S.Chang, W.B.Su, and Tien T. Tsong, Phys. Rev. Lett. 72(4) (1994) 574
[9] Tien T. Tsong et al. , Chin. J. Phys. 32(5) (1994) 667
[10] 黃英碩 , 清大物理表面物理課程講義SPM (2003)
[11] Tien T. Tsong, Phys. Rev. B 44(24) (1991) 704
[12] N.M. Miskovsky and Tien T. Tsong, Phys. Rev. B46(4) (1992) 2640
[13] N.M. Miskovsky, C.M. Wei and Tien T. Tsong, Phys. Rev. Lett. 69 (1992) 2427
[14] E. W. M□ller, Naturwissenshaften 29, (1941) 533.
[15] R. Gomer, Field Emission and Field Ionization (Harvard U. P., Cambridge, Mass., 1961).
[16] E. W. M□ller and T. T. Tsong, Field Ion Microscopy, American Elsevier Publ. Company, New York (1969).
[17] J. I. Pascual et al. , Phys. Rev. Lett. 71(12) (1993) 1852
[18] Hao-Li Zhang, Hu-Lin Li, Zhong-Fan Liu,
Microelectronic Engineering 63 (2002) 381
[19] Seiichi Kondo, Seiji Heike, Mark Lutwyche , and Yasuo Wada,
J. Appl. Phys. 78(1) (1995) 155
[20] Hammond, G.S. J. Am. Chem. Soc. 77 (1955) 334
[21] K. Bessho and S. Hashimoto, Appl. Phys. Lett. 65, (1994) 2142
[22] Margret Giesen, Progress in Surface Science 68 (2001) 1
[23]T. C. Chang, C. S. Chang, H. N. Lin, and Tien. T. Tsong,
Appl. Phys. Lett. 67(7), (1995) 903
[24] C. Lebreton, Z. Z. Wang, Appl. Phys. A 66 (1998) 777