研究生: |
吳昆聯 Wu, Kuen-Lien |
---|---|
論文名稱: |
Volume Comparison on Riemannian Manifolds 黎曼流形上的體積比較 |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 體積比較 |
外文關鍵詞: | volume comparison, Bakry-Emery Ricci tensor, Jacobi |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis we introduce volume comparison theorem that was ex-
tended by two dierent ways: one is represented by P. Petersen and G. Wei, which
is by using Jacobian and obtains the volume comparison[P-W]; and the other is rep-
resented by G. Wei and Will Wylie, they obtain the volume comparison by using
Bakry-Emery Ricci tensor[W-W].
[A-G] U. Abresch and D. Gromoll, On complete Riemannian manifolds with nonnegative Ricci cur-
vature, J. Amer. Math Soc., 3(2), 355{374, 1990.
[An] Michael.T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds,
Invet. Math. 102 (1990), 429{445
[B-Q] Dominique Bakry and Zhongmin Qian. Volume comparison Theorems without Jacobia elds
In Current trends in potential theory, 2005, volume 4 of Theta Ser. Adv. Math., pages 115{122.
Theta, Bucharest, 2005.
[C-L-N] Bennett Chow, Peng Lu, Lei Ni, Hamilton's Ricci Flow, Providence, R.I. : American Math-
ematical Society/Science Press(2006)
[DoCarmo] Manfredo P. do Carmo, Riemannian Geometry, Boston : Birkhauser (1992)
[L] John Lott. Some geometric properties of the Bakry-Emery-Ricci tensor, Comment. Math. Helv.,
78 (4): 865{883.2003
[P-W] P. Petersen, G. Wei, Relative Volume Comparison With Integral Curvature Bounds, GAFA
7 (1997), 1031{1045
[Pe-Sw] P. Petersen, S. Shteingold, G. Wei, Comparison Geometry With Integral Curvature Bounds,
GAFA 7 (1997), 1011{1030
[Pe] P. Petersen, Convergence Theorems in Riemannian Geometry, in \Comparison Geometry" (K.
Grove, P. Petersen, eds.), MSRI Publications vol. 30 (1997), Cambridge Univ. Press, 167{202
[Q] Zhongmin Qian. Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser.
(2), 48 (190):235{242, 1997.
[W-Z] Richard L. Wheeden and Antoni Zygmund. Measure and Integral an introduction to Real
Analysis, Marcel Dekker, Inc. New York And Basel.
[Y] D. Yang, Convergence of Riemannian Manifolds With Integral Bounds on Curvature I, Ann.
Sci. Ecol. Norm. Sup. 25(1992), 77{105
[W-W] Guofang Wei and Will Wylie, Comparison Geometry for the Bakry-Emery Ricci Tensor. J.
Dierential Geom. Volume 83, Number 2 (2009), 337{405.
[Z] Shun-Hui Zhu, The comparison geometry of Ricci curvature, In Comparison geometry( Berkeley,
CA, 1993{94), Volume 30 of Math. Sci. Res. Inst. Publ, pages 221{262. Cambridge Univ. Press,
Cambridge, 1997.