研究生: |
陳禹含 Chen, Yu Han |
---|---|
論文名稱: |
區塊抽樣之兩群落γ熵指標估計 Estimation of Gamma Entropy of Two Assemblages in Quadrat Sampling |
指導教授: |
趙蓮菊
Chao, Anne |
口試委員: |
鄭又仁
Cheng, Yu-Jen 胡殿中 Hu, Tien Chung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 熵 、兩群落 、區塊 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據Hill 數值指標及空間資料,Whittaker (1960)將地區多樣性 (gamma多樣性) 分解為兩部分:alpha及beta多樣性。一般而言,當一地區有多個群落時,gamma多樣性為混合群落的多樣性,alpha多樣性為平均群落的多樣性,而beta多樣性為衡量群落間物種組成的不同。因此,透過beta多樣性的轉換,可用來定量群落間物種組成的相似度或分化程度;其中較常使用根據熵指標建立的Horn相似指標為其一特例。
對於多樣性的估計,當樣本數小時,傳統的做大概似估計方法幾乎都會有嚴重低估的現象,Chao et al. (2013) 根據Good-Turing 方程式,推導得到群落內熵指標的近似不偏估計量。然而文獻中,對於對於多群落的gamma熵指標的估計幾乎不曾被討論。因此,本文的目的為在個別群落的區塊抽樣資料下發展一個新的估計方法來估計gamma熵指標。藉由電腦模擬的研究與傳統最大概似估計法比較,新的估計方法明顯在偏誤、均方根誤差以及95%信賴區間涵蓋率都有較佳的表現。
最後將新的估計方法及相似度指標應用到生態學家Foissner et al. (2002)在位於非洲西南部的納米比亞的三個地區收集共51個土壤泥塊的纖毛蟲物種資料。
Based on Hill numbers and spatial data, Whittaker (1960) used multiplicative decomposition approach to partition regional diversity (gamma diversity) into two components: alpha and beta components. Generally, when there are multiple communities, gamma diversity is the diversity of the pooled community, alpha diversity is the mean diversity of individual communities, and beta diversity measures the extent of compositional difference among communities Therefore, differentiation or similarity among communities can be quantified through transforming beta diversity; the traditional widely used entropy-based Horn-similarity index is a special case.
Since the observed diversity always underestimates the true diversity especially when sample size is small, Chao et al. (2013) developed a nearly unbiased estimator of within-community Shannon diversity based on Good-Turing frequency formulas. However, when there are multiple communities, the estimation of gamma Shannon has not been discussed in the literatures. A new estimator is proposed to estimate the gamma Shannon diversity based on the sampling data from each community. Through the computer simulation study, when compared with the traditional empirical method, the new proposed estimator exhibits substantial improvement in bias, RMSE and the coverage probability of 95% confidence interval. Finally, I apply the new proposed estimator and related similarity measure to the analysis of 51 soil ciliates quadrat sampling data collected by Foissner et al. (2002) from three areas in Namibia (Southwest Africa).
[1] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270.
[2] Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791.
[3] Chao, A. and Jost. L. (2012) Coverage-based rarefaction: standardizing samples by completeness rather than by size. Ecology, 93, 2533-2547.
[4] Chao, A. and Jost, L. (2014). Estimating diversity and entropy profiles via discovery rates of new species. Manuscript.
[5] Chao, A. and Shen, T.-J. (2003). Nonparametric Estimation of Shannon’s index of diversity when there are unseen species. Environmental and Ecological Statistics, 10, 429-443.
[6] Chao, A., Wang, Y. T., and Jost, L. (2013). Entropy and the species accumulation curve: a novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4, 1091-1110.
[7] Chiu, C.-H., Jost, L. and Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84, 21-44.
[8] Chiu, C.-H., Wang Y. T., Walther B. A. and Chao A. (2014). An improved non-parametric lower bound of species richness via the Good-Turing frequency formulas. Biometrics, 70, 671-682.
[9] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26.
[10] Foissner, W., Agatha, S., and Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia, 5, 1–1459.
[11] Good, I. J (1953).The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237-264.
[12] Good, I.J. (2000).Turing’s anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation, 66(2), 2000.
[13] Haas, P. J., Liu, Y. and Stokes, L. (2006). An Estimator of Number of Species from Quadrat Sampling. Biometrics, 62, 135-141.
[14] Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
[15] Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-375.
[16] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427–2439.
[17] Miller, G. A. (1955). Note on the bias of information estimates. Information theory in psychology: Problems and methods, 2, 95-100.
[18] Pan H-Y, Chao A, Foissner W. A (2009). Nonparametric Lower Bound for the Number of Species Shared by Multiple Communities. Journal of agricultural, biological, and environmental statistics, 14(4), 452-468.
[19] Shannon, C.E. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
[20] Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological monographs, 30(3), 279-338.
[21] Zahl, S. (1977). Jackknifing an index of diversity. Ecology, 58, 907-913.
[22] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51, 8-53.
[23] 周三童 (民 102). 區塊抽樣之熵指標估計 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[24] 曾凱聲 (民 103). 區塊抽樣之Hill指標估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文