簡易檢索 / 詳目顯示

研究生: 楊鎮華
Yang, Chen-Hua
論文名稱: 大氣硒化製程於銅銦鎵硒太陽能電池特性之研究
Investigation of Atmospheric Selenization Process on Cu(In,Ga)Se2 Thin Film Solar Cells
指導教授: 闕郁倫
Chueh, Yu-Lun
沈昌宏
Shen, Chang-Hong
口試委員: 楊智超
Yang, Chin-Chao
謝東坡
Hsieh, Tung-Po
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 58
中文關鍵詞: 大氣硒化銅銦鎵硒太陽能電池
外文關鍵詞: Atmospheric selenization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應世界能源短缺,可重複使用、乾淨的能源為下一代考量的重點。CIGS為第二代薄膜太陽能電池,具有諸多特點如高吸收係數、高穩定性、能源回收期短、成本低廉等競爭優勢,至今為止,德國ZSW研究機構已發展出效率達22.6%之CIGS太陽能電池,其未來應用於市場之潛力十分龐大。
    許多研究著重於硒化製程溫度對於CIGS之性質的影響,然而,很少有團隊在研究硒化製程壓力對於CIGS吸收層之性質的影響,目前已證實隨著壓力增加,可以觀察到能隙隨之增大的現象,因為硒可以更好的被併入吸收層裡。但是壓力對於電池表現以及CIGS成長卻還未被討論,在本研究裡,我們將探討此項議題。
    從電池表現來看,開路電壓會隨著壓力增加而增加,印證了能隙增加的現象,因為在高壓下製成的CIGS表面可以發現到比較高含量的和較平均分布的鎵,但是根據TRPL結果發現隨著壓力增高,表面離子再復合的情況也隨之上升,導致高壓製程下的電池效率並不會比低壓高。另外,在探討高壓和低壓對於CIGS成長的結果裡,我們發現到,由於在高壓下硒可以較快速的擴散進去並反應,所以能夠在較低溫的時候形成CIGS,導致產生較少的相分離和較均勻的鎵分布情況,另外,透過XPS結果得知,在低壓下,由於較多的硒空缺產生,導致氧氣能夠佔據硒空缺,形成了表面鈍化效應,此效應也造成表面銅缺乏的現象。此一銅缺乏的現象因此引起在後續CdS 沉積後,鎘離子能夠擴散進去CIGS吸收層並且佔據銅空缺,進而抑制表面離子再復合和同質接面增大的情況,進一步提升電池表現。
    此研究展示了壓力對於電池表現以及CIGS成長的情形,目前在硒化壓力為150 torr下可以得到效率超過10%的電池表現,另外,在高壓600 torr下製成的電池效率能夠超過9%,展現出未來低成本大氣硒化的潛力。


    For the sake of energy shortage, renewable and clean energy substitution is a considerable point for the next generation. CIGS is the best thin film solar cell among the second generation solar cells owing to its plenty outstanding behaviors such as high absorption coefficient, excellent outdoor stability, the easiest integration with Si-based technology and the highest efficiency in thin film solar cells. Therefore, it has already attracted tremendous attention in academic and industrial fields. Up to date, the highest efficiency of 22.6% has been demonstrated by ZSW in Germany.
    Many researches focus on the investigation of temperature effect during selenization on the properties of CIGS. Only few studies demonstrated the influence of selenization pressure on properties of CIGS absorber. It is verified that energy band gap increases with increasing pressure due to better incorporation of Se into CIGS absorber. However, pressure effect on cell performance and CIGS growth mechanism is still needed to figure out.
    Cell performance shows an enhanced Voc with increasing pressure due to higher band gap. This can be related to higher contents of Ga at the surface and more uniform Ga distribution, resulting in higher band gap. On the contrary, Jsc and FF of cell fabricated under high pressure are lower than that of low pressure which is resulted from surface recombination based on TRPL results. To shed light on growth mechanism, XRD results of phase evolution indicate that formation of CIGS under high pressure happens earlier than that of low pressure owing to higher amount of Se incorporated into CIGS thin film. According to XPS results, Cu-poor at the surface was observed in the case of low pressure which is mainly related to Se vacancies. As a result, Cu-poor triggers CdCu substitutions based on TEM-EDS results, leading to widened buried homo-junction and improvement in cell performance.
    In this study, we have demonstrated pressure effect on cell performance and growth mechanism under low pressure and high pressure. The optimized pressure for selenization is 150 torr with conversion efficiency of 10.12% owing to better film quality, suppressed interface recombination and less defects. Furthermore, the conversion efficiency of over 9% of cells fabricated under 600 torr can be achieved, revealing the potential for the low-cost atmospheric selenization.

    摘要 I ABSTRACT III 致謝 V CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XII Chapter 1 Introduction 1 1.1. Preface 1 1.1. Different type of solar cell 2 1.2. Basic principle and characteristic of solar cell 3 1.3. CIGS solar cell introduction 8 1.3.1. CIGS introduction and development potential 8 1.3.2. CIGS device structure 9 1.4. Motivation 13 1.5. Paper review 13 Chapter 2 Experiment and Analysis 15 2.1. Fabrication instrument 15 2.1.1. In-line sputtering system 15 2.1.2. Atmospheric selenization furnace 15 2.2. Analysis instrument 16 2.2.1. Solar cell simulator system 16 2.2.2. Scanning electron microscope, SEM 19 2.2.3. X-ray diffraction analysis, XRD 20 2.2.4. Raman scattering analysis, Raman 21 2.2.5. Photoluminescence system, PL 22 2.2.6. Time-Resolved Photoluminescence, TRPL 23 2.2.7. Electron spectroscopy for chemical analysis, ESCA 24 2.2.8. Energy dispersive spectrometers, EDS 25 2.2.9. IPCE (Incident photon to current efficiency) / EQE (external quantum efficiency) System 26 Chapter 3 Experimental 27 3.1. CIGS solar cell fabrication 27 3.1.1. Soda-lime glass cleaning 27 3.1.2. Mo electrode deposition 28 3.1.3. CIG precursor sputtering 29 3.1.4. CIGS selenization process 30 3.1.5. CdS buffer layer deposition 31 3.1.6. ZnO/ITO window layer and Al electrode fabrication 33 Chapter 4 Results and Discussion 34 4.1. CIGS thin film analysis 34 4.1.1. SEM analysis of microstructural and morphology 34 4.1.2. X-ray diffraction & Raman scattering spectrum analysis 36 4.1.3. SEM/EDS analysis of composition profile 38 4.2. CIGS solar cell analysis 39 4.2.1. PL & TRPL analyses 39 4.2.2. Efficiency measurements of CIGS solar cell 41 4.2.3. EQE analysis 43 4.3. Pressure effect on CIGS Growth 44 4.3.1. X-ray diffraction analysis 45 4.3.2. XPS analysis of surface composition 47 4.3.3. TEM/EDS analysis of CIGS/CdS interface 50 Chapter 5 Conclusion 52 Chapter 6 Future work 53 Chapter 7 References 55

    1. Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
    2. Kronik, L., D. Cahen, and H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998. 10(1): p. 31-36.
    3. Rudigier, E., et al., Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960.
    4. Yoon, J.-H., et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells, 2011. 95(11): p. 2959-2964.
    5. Minemoto, T., et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 83-88.
    6. Nakada, T. and M. Mizutani, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Japanese Journal of Applied Physics, 2002. 41(Part 2, No. 2B): p. L165-L167.
    7. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci., 2017. 10(6): p. 1306-1319.
    8. Jung, S.H., J.H. Choi, and C.W. Chung, Influence of Selenization Pressure on Properties of CIGS Absorber Layer Prepared by RF Sputtering. Current Photovoltaic Research, 2016. 4(3): p. 87-92.
    9. Schmidt, S.S., et al., Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2solar cell absorber layers using elemental selenium vapor. Progress in Photovoltaics: Research and Applications, 2017. 25(5): p. 341-357.
    10. Lundberg, O., M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 2005. 480-481: p. 520-525.
    11. Marudachalam, M., et al., Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films. Journal of Applied Physics, 1997. 82(6): p. 2896-2905.
    12. Mainz, R., et al., Time-resolved investigation of Cu(In,Ga)Se2growth and Ga gradient formation during fast selenisation of metallic precursors. Progress in Photovoltaics: Research and Applications, 2015. 23(9): p. 1131-1143.
    13. Wu, T.-T., et al., Toward high efficiency and panel size 30×40cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature. Nano Energy, 2014. 10: p. 28-36.
    14. Baji, Z., et al., Post-selenization of stacked precursor layers for CIGS. Vacuum, 2013. 92: p. 44-51.
    15. Lee, D.W., et al., Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films. Thin Solid Films, 2012. 520(20): p. 6382-6385.
    16. Guillen, C., M.A. Martinez, and J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films, 1998. 335(1-2): p. 37-42.
    17. Abou-Ras, D., et al., Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells. Thin Solid Films, 2005. 480-481: p. 433-438.
    18. Purwins, M., et al., Kinetics of the reactive crystallization of CuInSe2 and CuGaSe2 chalcopyrite films for solar cell applications. Journal of Crystal Growth, 2006. 287(2): p. 408-413.
    19. Ahn, S., K. Kim, and K. Yoon, MoSe2 Formation from Selenization of Mo and Nanoparticle Derived Cu(In,Ga)Se2/Mo Films. 2006: p. 506-508.
    20. Kronik, L., et al., Interface redox engineering of Cu(In,Ga)Se 2 – based solar cells: oxygen, sodium, and chemical bath effects. Thin Solid Films, 2000. 361-362: p. 353-359.
    21. Zhang, S.B., S.-H. Wei, and A. Zunger, Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs. Physical Review Letters, 1997. 78(21): p. 4059-4062.
    22. Cahen, D. and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560.
    23. Jiang, C.-S., et al., Direct evidence of a buried homojunction in Cu(In,Ga)Se2 solar cells. Applied Physics Letters, 2003. 82(1): p. 127-129.
    24. Liao, D. and A. Rockett, Cu depletion at the CuInSe2 surface. Applied Physics Letters, 2003. 82(17): p. 2829-2831.
    25. Yan, Y., et al., Microstructure of surface layers in Cu(In,Ga)Se2 thin films. Applied Physics Letters, 2002. 81(6): p. 1008-1010.
    26. Wu, T.-T., et al., 30×40 cm 2 flexible Cu(In,Ga)Se 2 solar panel by low temperature plasma enhanced selenization process. Nano Energy, 2016. 24: p. 45-55.
    27. Minaev, V.S., S.P. Timoshenkov, and V.V. Kalugin, Structural and phase transformations in condensed selenium. Journal of Optoelectronics and Advanced Materials, 2005. 7(4): p. 1717-1741.
    28. Li, I.L., et al., Geometry, phase stability, and electronic properties of isolated selenium chains incorporated in a nanoporous matrix. J Am Chem Soc, 2005. 127(46): p. 16111-9.

    QR CODE