研究生: |
孫正澔 Sun, Cheng-Hao |
---|---|
論文名稱: |
等速驅動整合式微型可調變流體振盪器的設計與三維列印 Design and 3D Printing of a Constant-Speed Driven Reconfigurable Integrated Microfluidic Oscillator |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳紹文
Chen, Shao-Wen 陳宗麟 Chen, Tsung-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 微型可調變流體振盪器 、流體等效電路模型 、等速驅動 、三維列印 |
外文關鍵詞: | Microfluidic oscillator, Fluidic equivalent circuit model, Constant flow rate, 3D printing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於設計與開發一種新型微型可調變流體振盪器,該振盪器在等
速驅動條件下運行,並利用光固化三維列印技術實現製造。相較於傳統振盪器
設計,本文提出的振盪器在結構設計上更加緊湊,展現出高度的靈活性與易製
造性,適用於生物醫學檢測、軟體機器人、自適應控制等多元領域,為未來微
流體技術的廣泛應用開闢了新的可能性。
在具體設計方面,振盪器以流體等效電路模型為基礎,結合神經網路模型
進行優化,用於預測和優化振盪器的性能參數,能夠精確調整流阻、流容、彈
簧常數、開關壓力及薄膜厚度等關鍵參數,從而實現對輸出訊號週期與壓力特
性的細緻調控。同時,振盪器融入螺紋機構設計,使其能夠在實際操作中快速
進行即時調整,滿足多場景、多需求的操作要求。研究中採用氣體作為工作流
體,並藉由優化光劑量分布及後處理工藝,製造出高解析度、高性能的微流體
元件,充分展示了 DLP 三維列印技術在微流體領域中的應用潛力。
實驗結果表明,該振盪器能實現 0.6 秒至 12 秒範圍內的振盪週期調整,
並提供 2 kPa 至 40 kPa 的壓力範圍可控性。透過流體等效電路模型進行分析
與設計,該設計方法有效降低了流體系統的建模複雜性,並結合神經網路進一
步提高模型準確性,使其能快速響應多種操作場景,並準確預測輸出與輸入關
係,使振盪器在多變的操作條件下均能保持優異的穩定性與靈活性。本研究成
果不僅在理論上為微流體技術提供了新思路,還在實踐中構築了一套創新性的
設計與製造框架,為推動微流體技術的持續發展奠定了堅實的基礎。
This thesis presents a novel micro-adjustable fluid oscillator that operates under constant flow rate driving conditions. Fabricated using DLP photopolymer-based 3D printing, the oscillator features a compact and efficient structure with high flexibility and ease of fabrication. This design is applicable to various fields, including biomedical diagnostics, soft robotics, and adaptive control.
The oscillator utilizes an optimized fluidic equivalent circuit model integrated with a neural network to precisely control parameters such as flow resistance, capacitance, spring constant, membrane thickness, and switching pressure. This allows for fine-tuning of the oscillation period and pressure characteristics. A threaded mechanism allows for real-time adjustments to meet diverse operational needs. Using gas as the working fluid, high-resolution, high-performance microfluidic components are fabricated by optimizing light dosage distribution and post-processing techniques, highlighting the potential of DLP 3D printing for microfluidic applications.
Experimental results demonstrate that the oscillator can adjust the oscillation period within a range of 0.6 to 12 seconds and control the pressure between 2 kPa and 40 kPa. The fluidic equivalent circuit model simplifies system analysis. Integration with a neural network improves model accuracy and enables rapid response to varying operating conditions. The oscillator exhibits excellent stability and flexibility under various operating conditions. This study provides a novel design and fabrication framework for microfluidic devices, advancing both the theoretical and practical development of microfluidic technologies.
1. Tabeling, Patrick. Introduction to microfluidics. Oxford university press, 2023.
2. Chokkalingam, Venkatachalam, et al. "Optimized droplet-based microfluidics scheme for sol–gel reactions." Lab on a Chip 10.13 (2010): 1700-1705.
3. Shestopalov, Ilya, Joshua D. Tice, and Rustem F. Ismagilov. "Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system." Lab on a Chip 4.4 (2004): 316-321.
4. Manz, Andréas, N. Graber, and H. áM Widmer. "Miniaturized total chemical analysis systems: a novel concept for chemical sensing." Sensors and actuators B: Chemical 1.1-6 (1990): 244-248.
5. 楊祥至. "以快速微製程開發之三維流體邏輯裝置及整合技術." 清華大學工程與系統科學系學位論文 2019 (2019): 1-107.
6. Oh, Kwang W., et al. "Design of pressure-driven microfluidic networks using electric circuit analogy." Lab on a Chip 12.3 (2012): 515-545.
7. Grover, William H., et al. "Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices." Sensors and Actuators B: Chemical 89.3 (2003): 315-323.
8. Hong, Jong Wook, and Stephen R. Quake. "Integrated nanoliter systems." Nature biotechnology 21.10 (2003): 1179-1183.
9. Chia, Bonnie Tingting, Hsin-Hung Liao, and Yao-Joe Yang. "A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid." Sensors and Actuators A: Physical 165.1 (2011): 86-93.
10. Unger, Marc A., et al. "Monolithic microfabricated valves and pumps by multilayer soft lithography." science 288.5463 (2000): 113-116.
11. T Aufinger, Lukas, Johann Brenner, and Friedrich C. Simmel. "Complex dynamics in a synchronized cell-free genetic clock." Nature communications 13.1 (2022): 2852.
12. Prabhakarpandian, Balabhaskar, et al. "Microfluidic devices for modeling cell–cell and particle–cell interactions in the microvasculature." Microvascular research 82.3 (2011): 210-220.
13. Hwang, Yongha, et al. "Capillary flow in PDMS cylindrical microfluidic channel using 3-D printed mold." Journal of Microelectromechanical Systems 25.2 (2016): 238-240.
14. Hwang, Yongha, Omeed H. Paydar, and Robert N. Candler. "3D printed molds for non-planar PDMS microfluidic channels." Sensors and Actuators A: Physical 226 (2015): 137-142.
15. Shahrubudin, Nurhalida, Te Chuan Lee, and R. J. P. M. Ramlan. "An overview on 3D printing technology: Technological, materials, and applications." Procedia manufacturing 35 (2019): 1286-1296.
16. Waheed, Sidra, et al. "3D printed microfluidic devices: enablers and barriers." Lab on a Chip 16.11 (2016): 1993-2013.
17. Au, Anthony K., et al. "3D‐printed microfluidics." Angewandte Chemie International Edition 55.12 (2016): 3862-3881.
18. Rogers, Chad I., et al. "3D printed microfluidic devices with integrated valves." Biomicrofluidics 9.1 (2015).
19. Sampson, Kathleen L., et al. "Multimaterial vat polymerization additive manufacturing." ACS Applied Polymer Materials 3.9 (2021): 4304-4324.
20. Warr, Chandler A., et al. "3d-printed microfluidic droplet generator with hydrophilic and hydrophobic polymers." Micromachines 12.1 (2021): 91.
21. Gong, Hua, et al. "Optical approach to resin formulation for 3D printed microfluidics." RSC advances 5.129 (2015): 106621-106632.
22. Rhee, Minsoung, and Mark A. Burns. "Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems." Lab on a Chip 9.21 (2009): 3131-3143.
23. Jacobson, Stephen C., Sergey V. Ermakov, and J. Michael Ramsey. "Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices." Analytical chemistry 71.15 (1999): 3273-3276.
24. Yang, Bozhi, and Qiao Lin. "A latchable phase-change microvalve with integrated heaters." Journal of microelectromechanical systems 18.4 (2009): 860-867.
25. Wang, Yingzhe, et al. "A simple micro check valve using a photo-patterned hydrogel valve core." Sensors and Actuators A: Physical 304 (2020): 111878.
26. Gallardo Hevia, Elizabeth, et al. "High‐gain microfluidic amplifiers: the bridge between microfluidic controllers and fluidic soft actuators." Advanced Intelligent Systems 4.10 (2022): 2200122.
27. Weaver, James A., et al. "Static control logic for microfluidic devices using pressure-gain valves." Nature Physics 6.3 (2010): 218-223.
28. Vo, Vi T., et al. "Sheet‐Based Fluidic Diodes for Embedded Fluidic Circuitry in Soft Devices." Advanced Intelligent Systems (2024): 2300785.
29. Xu, Linfeng, et al. "Passive micropumping in microfluidics for point-of-care testing." Biomicrofluidics 14.3 (2020).
30. Juncker, David, et al. "Autonomous microfluidic capillary system." Analytical chemistry 74.24 (2002): 6139-6144.
31. Lai, Hoyin, and Albert Folch. "Design and dynamic characterization of “single-stroke” peristaltic PDMS micropumps." Lab on a Chip 11.2 (2011): 336-342.
32. Johnston, I. D., et al. "Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump." Lab on a Chip 5.3 (2005): 318-325.
33. Yang, Bozhi, and Qiao Lin. "A latchable microvalve using phase change of paraffin wax." Sensors and Actuators A: Physical 134.1 (2007): 194-200.
34. Duncan, Philip N., Transon V. Nguyen, and Elliot E. Hui. "Pneumatic oscillator circuits for timing and control of integrated microfluidics." Proceedings of the National Academy of Sciences 110.45 (2013): 18104-18109.
35. Kim, Sung-Jin, et al. "Constant flow-driven microfluidic oscillator for different duty cycles." Analytical chemistry 84.2 (2012): 1152-1156.
36. Park, Juhwan, Dong Hyun Han, and Je-Kyun Park. "Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices." Lab on a Chip 20.7 (2020): 1191-1203.
37. Wehner, Michael, et al. "An integrated design and fabrication strategy for entirely soft, autonomous robots." nature 536.7617 (2016): 451-455.
38. Drotman, Dylan, et al. "Electronics-free pneumatic circuits for controlling soft-legged robots." Science Robotics 6.51 (2021): eaay2627.
39. Gong, Hua, Adam T. Woolley, and Gregory P. Nordin. "High density 3D printed microfluidic valves, pumps, and multiplexers." Lab on a Chip 16.13 (2016): 2450-2458.
40. Groisman, Alex, and Stephen R. Quake. "A microfluidic rectifier: Anisotropic flow resistance at low Reynolds numbers." Physical review letters 92.9 (2004): 094501.
41. Matthews, David, et al. "Efficient automatic design of robots." Proceedings of the National Academy of Sciences 120.41 (2023): e2305180120.
42. Li, Zhenglin, Preyojon Dey, and Sung-Jin Kim. "Microfluidic single valve oscillator for blood plasma filtration." Sensors and Actuators B: Chemical 296 (2019): 126692.