簡易檢索 / 詳目顯示

研究生: 楊文豪
Yang, Wun-Hao
論文名稱: 低溫場域之低GWP冷媒發電系統效能最佳化
Optimization the Performance of Low GWP Refrigerant Power Generation System Using the Low-Grade Heat Source
指導教授: 陳玉彬
Chen, Yu-Bin
口試委員: 郭長信
Kuo, Chang-Hsin
施威宏
Shih, Wei-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 基因演算法地熱發電低GWP冷媒有機朗肯循環熱電系統優化
外文關鍵詞: genetic algorithm, geothermal power, low GWP refrigerant, organic Rankine cycle, thermoelectric system optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低溫場域熱電系統優化為針對水溫< 100℃或氣體溫度< 250℃的發電系統進行性能優化,適用於工業廢熱、太陽熱能、生質熱能、地熱能等發電領域,可回收能源並使用於該場域中。本研究選定台東知本的地熱泉水為熱源,以一組額定發電約16 kW量級的有機朗肯循環發電機組為目標,建立一套符合機組系統的熱力模型,結合自行撰寫之基因演算法優化系統操作條件,進而提升系統效能(發電效率、淨輸出功)。
    系統模擬除現有工作流體R134a之外,亦分析將工作流體替換為低全球暖化潛勢冷媒(R1234yf、R1234ze(E)、R1243zf),可達到的發電效能與對環境的影響。最後,將以發電機組的實驗數據利用軟體分析系統內部熱傳量隨時間變化,驗證元件參數調整的效果,透過優化手段以提升發電效能。


    The optimization of low-temperature field power generation system is to optimize the performance of power generation system for water temperature < 100°C or gas temperature < 250°C. It is applicable to industrial waste heat, solar energy, biomass heat, geothermal energy, etc. In this study, a geothermal spring in Jhihben, Taitung, was used as the hot source. We will establish a thermodynamic model that fits the 16 kW organic Rankine cycle power genset. The power generation efficiency and net output power of system was improved by using genetic algorithm.
    The system simulations will analyze the power generation efficiency and environmental impact by the working fluid R134a and low global warming potential refrigerants (R1234yf, R1234ze(E), R1243zf). Finally, the experimental data of the genset will be used to analyze the heat transfer of the system over time. We will adjust the component parameters by optimization to improve the performance of power generating system.

    摘要--------------------------------i Abstract----------------------------ii 誌謝--------------------------------iii 目錄--------------------------------iv 圖目錄------------------------------vi 符號表------------------------------x 第一章 緒論-------------------------1 1.1 研究背景------------------------1 1.1.1 低溫場域之地熱能源-------------1 1.1.2 全球暖化下替換低GWP冷媒趨勢-----5 1.1.3 最佳化方法--------------------6 1.2 研究動機------------------------8 1.3 研究目標------------------------9 第二章 地熱發電循環系統--------------10 2.1 有機朗肯循環--------------------10 2.2 地熱發電機組介紹----------------16 第三章 研究方法---------------------22 3.1 數值模擬------------------------22 3.1.1 建立ORC熱力循環模型------------22 3.1.2建立基因演算法程序--------------27 3.2 環保冷媒選用--------------------38 第四章 結果與討論--------------------44 4.1 有機朗肯循環模型-----------------44 4.1.1 模型驗證----------------------44 4.1.2 演算法優化結果----------------48 4.1.3 優化數值與極值分析------------52 4.2 發電過程之熱力分析---------------61 第五章 結論與未來工作----------------66 5.1 結論----------------------------66 5.2 未來工作------------------------68 參考文獻----------------------------69

    [1] 蔡佩君、黃釋緯、馬公勉, "區域能源整合調查與策略建議," 台灣經濟研究院, p. 65, 2011.
    [2] J. Finger and D. Blankenship, "Handbook of best practices for geothermal drilling," Sandia National Laboratories, Albuquerque, 2010.
    [3] A. E. Eissa and M. M. Zaki, "The impact of global climatic changes on the aquatic environment," Procedia Environmental Sciences, vol. 4, pp. 251-259, 2011.
    [4] G. J. Velders, D. W. Fahey, J. S. Daniel, S. O. Andersen, and M. McFarland, "Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions," Atmospheric Environment, vol. 123, pp. 200-209, 2015.
    [5] H. Chen, D. Y. Goswami, and E. K. Stefanakos, "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and sustainable energy reviews, vol. 14, pp. 3059-3067, 2010.
    [6] W. Liu, D. Meinel, C. Wieland, and H. Spliethoff, "Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation," Energy, vol. 67, pp. 106-116, 2014.
    [7] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-International Conference on Neural Networks, 1995, pp. 1942-1948.
    [8] D. Karaboga and B. Basturk, "On the performance of artificial bee colony (ABC) algorithm," Applied soft computing, vol. 8, pp. 687-697, 2008.
    [9] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE computational intelligence magazine, vol. 1, pp. 28-39, 2006.
    [10] W. Qiao and Z. Yang, "Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems," IEEE Access, vol. 7, pp. 110472-110486, 2019.
    [11] J. Wang, Z. Yan, M. Wang, M. Li, and Y. Dai, "Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm," Energy Conversion and Management, vol. 71, pp. 146-158, 2013.
    [12] M. Imran, M. Usman, B.-S. Park, H.-J. Kim, and D.-H. Lee, "Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source," Applied Thermal Engineering, vol. 80, pp. 1-9, 2015.
    [13] A. Modi and F. Haglind, "Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications," Applied Thermal Engineering, vol. 76, pp. 196-205, 2015.
    [14] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, and N. Moazami, "Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine," Energy conversion and management, vol. 91, pp. 186-198, 2015.
    [15] R. Vidhi, S. Kuravi, D. Yogi Goswami, E. Stefanakos, and A. S. Sabau, "Organic fluids in a supercritical rankine cycle for low temperature power generation," Journal of Energy Resources Technology, vol. 135, 2013.
    [16] S. Li and Y. Dai, "Thermo-economic comparison of Kalina and CO2 transcritical power cycle for low temperature geothermal sources in China," Applied Thermal Engineering, vol. 70, pp. 139-152, 2014.
    [17] G. Demirkaya, R. V. Padilla, A. Fontalvo, A. Bula, and D. Y. Goswami, "Experimental and theoretical analysis of the Goswami cycle operating at low temperature heat sources," Journal of Energy Resources Technology, vol. 140, 2018.
    [18] M. A. Iqbal, S. Rana, M. Ahmadi, A. Date, and A. Akbarzadeh, "Experimental study on the prospect of low-temperature heat to power generation using Trilateral Flash Cycle (TFC)," Applied Thermal Engineering, vol. 172, p. 115139, 2020.
    [19] M. T. Abisa, "Geothermal binary plant operation and maintenance systems with Svartsengi power plant as a case study," Geothermal Training in Iceland: Reports of the United Nations University Geothermal Training Progamme in geothermal exploration, 2002.
    [20] B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis, "Low-grade heat conversion into power using organic Rankine cycles–A review of various applications," Renewable and Sustainable Energy Reviews, vol. 15, pp. 3963-3979, 2011.
    [21] T. Tartière and M. Astolfi, "A world overview of the organic Rankine cycle market," Energy Procedia, vol. 129, pp. 2-9, 2017.
    [22] 經濟部水利署, "中華民國一百零五年臺灣溫泉監測季報," ed, 2016.
    [23] 經濟部水利署, "中華民國一百零三年台灣溫泉監測季報," ed, 2014.
    [24] 漢力能源科技股份有限公司, "33kW之ORC發電機," ed, 2017.
    [25] J. Vivian, G. Manente, and A. Lazzaretto, "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, vol. 156, pp. 727-746, 2015.
    [26] Z. Wang, N. Zhou, J. Guo, and X. Wang, "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, vol. 40, pp. 107-115, 2012.
    [27] V. Lemort and A. Legros, "Positive displacement expanders for Organic Rankine Cycle systems," in Organic Rankine Cycle (ORC) Power Systems, ed: Elsevier, 2017, pp. 361-396.
    [28] m. s. e. ltd. (2019). Useful information on centrifugal pumps. Available: https://www.michael-smith-engineers.co.uk/resources/useful-info/centrifugal-pumps
    [29] L. WALRUS PUMP CO. (July 8th). WALRUS PUMP For Industrial Use. Available: https://walruspump.com/zh-tw/product/index/2.html
    [30] A. Fraser, "Simulation of genetic systems," Journal of Theoretical Biology, vol. 2, pp. 329-346, 1962.
    [31] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press, 1992.
    [32] G. Purohit, A. M. Sherry, and M. Saraswat, "Optimization of function by using a new MATLAB based genetic algorithm procedure," International journal of computer applications, vol. 61, 2013.
    [33] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach to global optimization: Springer Science & Business Media, 2006.
    [34] F. Neri and V. Tirronen, "Recent advances in differential evolution: a survey and experimental analysis," Artificial intelligence review, vol. 33, pp. 61-106, 2010.
    [35] R. Zhai, Z. Yang, B. Feng, Z. Lv, W. Zhao, and Y. Chen, "Research on miscibility performances of refrigerants with mineral lubricating oils," Applied Thermal Engineering, vol. 159, p. 113811, 2019.
    [36] ASHRAE, "Standard 34: Designation and Safety Classification of Refrigerants.," American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2013.
    [37] GRUNDFOS. (2012). MG STANDARD MOTORS, 3 phase 0.25 - 22 kW. Available: www.suomenpikaliitin.fi/pages/esitteet/MG%20IE3%20ver1011%2010134.pdf
    [38] M. O. McLinden, A. F. Kazakov, J. S. Brown, and P. A. Domanski, "A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants," International Journal of Refrigeration, vol. 38, pp. 80-92, 2014.

    QR CODE