簡易檢索 / 詳目顯示

研究生: 張吉本
Chi-Ben Chang
論文名稱: 應用於高頻電磁晶體材料之研究
High-Frequency Ba2Ti9O20 Electromagnetic Bandgap Structures and Ba2Ti9O20 Dielectric Materials
指導教授: 柳克強
Keh-Chyang Leou
林諭男
I-Nan Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 281
中文關鍵詞: Ba2Ti9O20微波介電陶瓷光子晶體電磁晶體反應燒結能隙高頻毫米波HFSS奈米粉末
外文關鍵詞: Ba2Ti9O20, microwave dielectric ceramic, photonic bandgap crystal, electromagnetic bandgap crystal, reaction sinter, bandgap, high frequency, millimeter wave, 高頻結構模擬軟體, nanopowder
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究以Ba2Ti9O20微波介電陶瓷材料及其在二維電磁晶體薄板元件的應用為主要研究內容。首先將分別配製type A(2BaTiO3+7TiO2)及type B(BaTi4O9+BaTi5O11)兩種不同之奈米混合粉末,再藉由不同球磨方法與不同反應燒結製程,來進行Ba2Ti9O20微波介電陶瓷材料的開發,有系統地深入探討製程參數、顯微組織結構以及結構與性能相互關係等一系列基礎及技術問題。此外,實際製作出二維Ba2Ti9O20正方晶格及三角晶格的電磁晶體薄板元件,除將量測之能隙位置與理論計算結果進行比較外,同時亦探討二維Ba2Ti9O20電磁晶體薄板元件之設計參數、製程參數、微波介電性質等對其實際能隙的影響。
    □利用氮化矽高能量球磨製程(Si3N4 -HeM)可以很有效率的粉碎Ba2Ti9O20材料,提高其活性及緻密化效率。但是會引入SiO2污染,因此嚴重降低Ba2Ti9O20材料之Qxf值。以氧化鋯高能量球磨製程(ZrO2-HeM)處理後之Ba2Ti9O20材料,可有效地抑制SiO2雜質的污染及二次相的生成,因此會比經0.25h氮化矽高能量球磨製程(Si3N4 -HeM)或傳統球磨製程(BM)處理之Ba2Ti9O20材料,具有較均質(homogeneous)的晶粒組織及較佳的微波介電性質。但是增加高能量球磨時間後,反而會造成粉體凝團,而降低Ba2Ti9O20材料的Qxf值。故改用三度空間球磨製程(3DM)取代高能量球磨製程(HeM),除可有效地均勻細化混合煆燒粉末外,並可避免因磨球、罐所造成之SiO2污染,而能明顯改善Ba2Ti9O20材料的晶粒組織及微波特性,因此在1350℃/4h燒結條件下,具有較高的Qxf值,並大於傳統球磨製程之Ba2Ti9O20材料Qxf值的高約10 ﹪左右。
    一般Ba2Ti9O20材料的晶粒會因為成長的異向性(anisotropic)而成為高細長比(aspect ratio)的形狀,在燒結時常因造橋現象(bridging effect)妨礙Ba2Ti9O20材料的緻密化。SnO2的添加可明顯減少Ba2Ti9O20材料晶粒的細長比,可有效抑制因造橋現象(bridging effect)阻礙燒結緻密化的負面作用,因此添加0.055~0.22 mole SnO2並經1350℃/4h燒結的Ba2Ti9O20材料,其密度都可達到理論密度值的98%。然而,Sn4+離子在SnO6八面體內的極化率(polarizability)低於Ti4+離子在TiO6八面體內的極化率,故Ba2Ti9O20材料的介電常數K值隨SnO2添加濃度的增加而減少。而位於八面體內的Sn4+離子亦會造成內在晶格震動模式的互相密合性(coherence)不佳,進而降低Ba2Ti9O20材料的品質因子(Q)。因此微量SnO2添加在Ba2Ti9O20材料時,晶粒的細長比可被減少,其Qxf值會增加。然而SnO2添加量繼續增加後,將無法更進一步降低晶粒的細長比,但是過多的SnO2添加量卻會降低Ba2Ti9O20材料晶格震動模式的互相密合性,則Qxf值反而會減少。
    □ 不論在”一段式燒結緻密法”或 ”兩段式燒結緻密法”製程中,由typeB混合粉末燒結製作的Ba2Ti9O20 材料,其晶粒組織結構均勻性及微波介電性質都會優於type A混合粉末燒結製作的Ba2Ti9O20 材料。此外,Ba2Ti9O20 材料的微波介電常數(K)僅與燒結密度值有密切關係,而與微觀組織沒有密切關係。反之,Qxf 值則與微觀組織有密切關係。因此具有低細長(aspect ratio)比之大晶粒組織結構的Ba2Ti9O20 材料,其Qxf 值會高於具有高細長比之小晶粒組織結構的Ba2Ti9O20 材料。由type A或typeB 混合粉末及”一段式” 或 ”兩段式”燒結緻密法組合成的4種不同製程中,由於type B混合粉末在”一段式燒結緻密法”製程中,其相變態過程較簡單,因此具有最均勻顯微組織,並呈現及最高Qxf 值((Qxf) =34,000 GHz )。
    □由type A(2BaTiO3+7TiO2)混合粉末先經過傳統球磨製程(BM)處理後,再分別經不同預置反應時間”一段式燒結緻密法”製作的Ba2Ti9O20 材料,其微波介電性質對於前置反應時間(tr)及燒結溫度(Ts)等製程參數非常敏感,因此,對於經過1000℃前置反應時間非常短 (tr<3h) 之Ba2Ti9O20 材料,其燒結密度(D)、微波介電常數(K)及Qxf值會明顯較低。而由type B(BaTi4O9+BaTi5O11)混合粉末先經三度空間球磨 (3DM)製程,再分別經不同前置反應時間之”一段式燒結緻密法”製作的Ba2Ti9O20 材料,其密度、微波介電常數(K)都隨燒結溫度增加而增加,且經不同前置反應條件的密度值、微波介電常數(K)都無明顯的落差。而Ba2Ti9O20 材料的Qxf值亦隨燒結溫度的增加而增加A但經不同預置反應條件的Qxf值,其彼此間則呈現少許的差異,而此差異量遠少於由type A(2BaTiO3+7TiO2)混合粉末製作之Ba2Ti9O20 材料的差異量。故type B(BaTi4O9+BaTi5O11)混合粉末燒結製作的Ba2Ti9O20 材料,具有較佳的晶粒組織結構及微波介電性質。
    □ 最後我們將Ba2Ti9O20 材料應用於製作二維電磁晶體薄板(slab )。二維Ba2Ti9O20正方晶格及三角晶格電磁晶體薄板(slab )在30GHz~40GHz頻率範圍,量測之能隙位置與理論計算結果比較後,兩者相當接近。正方晶格及三角晶格之Ba2Ti9O20二維電磁晶體薄板,在週期(或晶格常數)及薄板厚度不變的條件下,當空氣孔洞直徑增加時,除了整體電磁晶體薄板的等效介電常數會降低,而導致能隙中心頻率提高外,亦會造成隙寬度變寬,孔洞填充率增加,實際能隙衰減程度變大。此外,正方晶格之Ba2Ti9O20二維電磁晶體薄板,在空氣孔洞直徑及薄板厚度不變的條件下,當週期(或晶格常數)增加時,整體電磁晶體薄板的等效介電常數會降低,但其 值卻變大,而導致能隙中心頻率降低。同時,亦會造成能隙寬度變窄,孔洞填充率降低,實際能隙衰減程度變小。


    Abstracts

    This work is to study the effect of processing parameters on the characteristics of Ba2Ti9O20 microwave dielectric materials and to use these materials for fabricating two-dimensional Ba2Ti9O20 electromagnetic bandgap structured(EBG) slabs. The Ba2Ti9O20 materials were synthesized via different milling techniques and sintering processes, using 2BaTiO3+7TiO2 (type A) or (BaTi4O9+BaTi5O11)(type B)mixtures as starting materials. The effect of process parameters on the crystal structure and the related microwave dielectric properties of Ba2Ti9O20 materials was systematically investigated. Moreover, the two-dimensional Ba2Ti9O20 EBG slabs with square or triangular lattices were designed using HFSS simulation package and were than fabricated. The effect of designing parameters, such as hole-size & lattice parameters, on bandgap of the two-dimensional Ba2Ti9O20 EBG slabs was studied. The bandgap of the fabricated EBG slab is in agree with the HFSS simulation results.

    Si3N4-HeM process can efficiently disintegrate the Ba2Ti9O20 powders, enhancing the reactivity and sinterability of the materials. However, this process will induce SiO2-contamination and therefore, pronouncedly degrade the Qxf-value of the materials. The SiO2-contamination was effectively inhibited when the ZrO2-(0.25h)-HeM process was used to replace for the Si3N4-(0.25h)-HeM one. The characteristics of the Ba2Ti9O20 materials were markedly improved, as compared with the ZrO2-HeM or BM processes. Utilization of the 3DM process in place of the HeM process can produce the powders of the same high activity but will not induce SiO2-contamination and other side effects and, therefore, markedly improve the microwave dielectric behavior for the Ba2Ti9O20 materials. The 3DM materials possess the same value of tne dielectric constant but have markedly better quality factor (more than 10% higher), as compared with the BM samples.]

    Addition of SnO2 decreases the length-to-diameter aspect ratio of the grains. The bridging effect due to anisotropic growth of the high-aspect-ratio grains is thus pronoucedly suppressed such that the densification process is facilitated. All the SnO2-doped materials possessed very high density (>98%T. D.), when they were sintered at 1350℃/4h. On the other hand, the lower polarizability of Sn+4-ions in the SnO6-octahedrons, as compared with the Ti4+-ions in the TiO6-octahedrons, will lowers the K-value the Ba2Ti9O20 materials. Moreover, the presence of Sn4+-ions in the TiO6-octahedrons will degrade the coherency of the intrinsic lattice vibration modes, which will impose detrimental effect on the quality factor for the Ba2Ti9O20 materials. Such a phenomenon accounted clearly the unusauall effect of SnO2-addition on modifying the Qxf-value of the materials. While the addition of small amount of SnO2-species facilitates the densification process by suppressing the anisotropic growth of the grains, incorporation of larger amount of SnO2-doping than necessary will not further improve the granular structure for the Ba2(Ti9-xSnx)O20 materials, but will degrade the coherency in lattice vibrational modes for the materials. Therefore, the Qxf-value of the Ba2(Ti9-xSnx)O20 materials increased firstly for lightly SnO2-doped samples and then it decreased with the proportion of SnO2-species when the SnO2-content is abundant.

    The Ba2Ti9O20 materials prepared from the (BaTi4O9+BaTi5O11)(type B)mixtures possess superior microstructres and Qxf-value to the materials prepared from 2BaTiO3+7TiO2 (type A) mixtures. The microwave dielectric constant (K) is insensitive to processing details, as the K-value of the materials is only closely related with density of the samples and is insensitive to the detailed microstructure of the samples. In contrast, the Qxf-value of the samples is very sensitive to the microstructure of the materials. Materials containing large grains of short-rod-geometry with small-aspect-ratio possess superior Qxf-value to the those which contain small-grains of long-rods-geometry with large- aspect-ratio. Among the 4 materials processed, type A & type B powder mixtures and 1-step & 2-step densification processes, the materials prepared from type B mixture and processed by “1-step densification” technique show most uniform microstructure and exhibit the highest Qxf-value ((Qxf) =34,000 GHz). It is ascribed to the simplicity in reaction routes for the formation of the Ba2Ti9O20 Hollandite-like phase from BaTi4O9 + BaTi5O11 mixture.

    The characteristics of the A-series samples, which were prepared from 2BaTiO3+7TiO2 mixture, vary markedly with the pre-reacting process in the “1-step & 2-step densification routes “, whereas those of the B-series samples, which were prepared from BaTi4O9+ BaTi5O11 mixture, are insensitive to such a process. The B-series materials, which were prepared from B-series mixture and pre-reacted at 1000℃ for 6 h or longer, show most uniform microstructure and exhibit the highest Qxf-value. It is ascribed to the simplicity in reaction routes for the formation of the Ba2Ti9O20 Hollandite-like phase from BaTi4O9 + BaTi5O11 mixture, which results in better granular structure for the materials.

    We then used the Ba2Ti9O20 materials for fabricating the 2-dimensional (2D) electromagnetic band gap crystals (EBG). The square or triangular lattice two-dimensional Ba2Ti9O20 EBG slab showed the measured bandgap, in the range of 30~40 GHz , was close to the bandgap calculated using HFSS. For square or triangular-type 2D EBG structures with fixed lattice constant and slab thickness, the effective dielectric constant of the lattice decreases with increasing diameter of air hole such that the mid-frequencies in the bandgap shifted toward a higher frequency. Moreover, increasing the filling factor will result in the wider bandgap. For square -type 2D EBG structures with fixed diameter of air hole and slab thickness, the effective dielectric constant of the lattice decreases with increasing lattice constant, but the -value increases such that the mid-frequencies in the bandgap move toward a lower frequency. Furthermore, decreasing the filling factor will result in narrower bandgap and less attenuation in the bandgap.

    目□錄 謝誌 中文摘要 i 英文摘要 目錄 vii 圖目錄 表目錄 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 第二章 文獻回顧 9 2.1 微波介電陶瓷材料 9 2.1.1 陶瓷材料之微波介電性質 9 2.1.2 微波介電陶瓷材料系統 17 2.2 Ba2Ti9O20微波介電陶瓷材料 25 2.2.1 Ba2Ti9O20微波介電陶瓷材料結晶結構 25 2.2.2 Ba2Ti9O20微波介電陶瓷材料性質 26 2.2.3 混合物氧化物法Ba2Ti9O20粉體 27 2.2.4 化學方式合成 32 2.3 微波介電陶瓷的應用 41 2.4 陶瓷薄帶製作 43 2.4.1 刮刀成形概述 43 2.4.2 影響生胚品質的變數 43 2.5 光子晶體簡介 47 2.5.1 光子晶體基本工作原理 47 2.5.2 光子晶體的製作 53 2.5.3 光子晶體在微波技術中的應用 55 2.5.4 頻率選擇表面 60 第三章 實驗方法 65 3.1 傳統球磨(BM)法製作Ba2Ti9O20 65 3.2 高能量球磨法(HeM)法製@Ba2Ti9O20材料 66 3.3 高能量球磨/傳統球磨法(HeM/BM)法製作Ba2Ti9O20材料 67 3.4 三度空間球磨法(3DM)法製作Ba2Ti9O20材料 68 3.5 以傳統球磨法(BM)製備BaTiO3-(3.5-X)TiO2-XSnO2及BaTiO3- (3.5-X)TiO2-XZrO2 69 3.6 以傳統球磨法(BM)製備2BaTiO3-7TiO2-0.1SiO2 70 3.7 type A(2BaTiO3+7TiO2)起始混合粉末的製備 71 3.8 type B(BaTi4O9+BaTi5O11)起始混合粉末的製備 71 3.8.1 BaTi4O9粉末的製備 71 3.8.2 BaTi5O11粉末的製備 72 3.8.3 BaTi4O9+ BaTi5O11粉末的製備 72 3.9 由三度空間球磨法(3DM)處理的type A及type B粉末經”兩 段式燒結緻密法”製作Ba2Ti9O20材料 73 3.10 由三度空間球磨法(3DM)處理的type A及typeB粉末經”一段 式燒結密法” 製作Ba2Ti9O20材料(前置反應時間為6h) 73 3.11 由傳統球磨法(BM)處理的type A粉末經” 一段式燒結緻密 法”製作由三度空間球磨法(3DM)處理的type A及typeB粉末 經”一段式燒結密法”製作Ba2Ti9O20材料(前置反應時間為0- 6h) 74 3.12 由三度空間球磨法(3DM)處理的type B粉末經”一段式緻密燒 結法” 製作Ba2Ti9O20材料(前置反應時間為0-6h) 75 3.13 Ba2Ti9O20材料特性分析 95 3.13.1 密度量測 95 3.13.2 XRD晶體結構分析 95 3.13.3 SEM/EPMA/TEM微結構觀察及分析 95 3.13.4 微波特性量測 96 3.14 二維Ba2Ti9O20陶瓷電磁晶體的設計及模擬分析 100 3.15 二維Ba2Ti9O20陶瓷電磁晶體的製作 107 3.16 二維Ba2Ti9O20陶瓷電磁晶體的高頻微波量測 108 第四章 高能量球磨法對於Ba2Ti9O20微波介電性質影響 112 4.1 氮化矽磨球、罐之高能量球磨法(Si3N4-HeM)--(I) 112 4.2 氮化矽磨球、罐之高能量球磨法(Si3N4-HeM)--(II) 116 4.3 氧化鋯磨球、罐之高能量球磨法(ZrO2-HeM) 118 4.4 綜合討論 121 4.5 結論 122 第五章 SiO2添加物對於Ba2Ti9O20微波介電性質之影響 143 5.1 高能量球磨(HeM)製程對於Ba2Ti9O20材料結構與微波介電性質 之影響 143 5.2 SiO2添加物對於Ba2Ti9O20材料結構與微波介電性質 之影響 146 5.3 三度空間球磨製程(3DM)製程對於Ba2Ti9O20材料結構與微波介 電性質之影響 150 5.4 結論 152 第六章 SnO2及ZrO2添加物對於Ba2Ti9O20微波介電性質之影響 165 6.1 添加SnO2及ZrO2之Ba2Ti9O2材料結構與微波介電性質的探討 165 6.2 結論 170 第七章 一段式燒結緻密法對於Ba2Ti9O20微波介電性質之影響 181 7.1 由3DM處理的type A及type B粉末經”兩段式燒結緻密法”製作 Ba2Ti9O20 181 7.2 由3DM處理的type A及type B粉末經”一段式燒結密法”製作 Ba2Ti9O20(前置反應時間為6h) 187 7.3 結論 193 第八章 一段式燒結緻密法中之前置反應對於Ba2Ti9O20微波介電 性 207 8.1 由BM處理的type A粉末經” 一段式燒結緻密法”製作Ba2Ti9O20 (前置反應時間為0~6h) 207 8.2 由3DM處理的type B粉末經”一段式緻密燒結法”製作Ba2Ti9O20 (前置反應時間為0~6h) 210 8.3 結論 214 第九章 二維Ba2Ti9O20電磁晶體之研究 225 9.1 空氣孔洞之直徑對能隙位置的影響 225 9.2 空氣孔洞之週期對能隙位置的影響 231 9.3 結論 235 第十章 總結 256 參考文獻 262 附錄 279

    參考文獻
    1.Kai Chang, RF and Microwave Wireless Systems, John Wiley
    & Sons, New York, (2000).
    2.張迎春,鈮鉭酸鹽微波介質陶瓷材料,科學出版社,北京,2005.
    3. R. D. Richtmyer, ”Dielectric resonator”, J. Appl. Phys., vol.10, pp.391-398, (1939).
    4. 江東亮,精細陶瓷材料, 中國物資出版社,北京,(2000).
    5. J. D. Joannopoulos et al., Photonic Crystal---Molding the Flow of Light, Princeton University Press, New Jersy, (1995).
    6. E Yablonovitch,” Inhibited Spontaneous Emission in Solid-State Physics and Electronics ”, Phys. Rev. Lett., vol..58, pp.2059–2062,(1987).
    7. S. John, ” Strong localization of photons in certain disordered dielectric superlattices ”, Physical Review Letter, Vol. 58, pp.2486-2489 , (1987).
    8. J. D. Joannopoulos et al., ” Photonic crystals: putting a new twist on light “, Nature, vol. 386 , pp143 - 149, (1997).
    9. M. R. Gongora-Rubio et al., “ Overview of low temperature co-fired ceramics tape technology for meso-system technology“, Sensor and Actuator A , Vol. 89, pp. 222-241, (2001).
    10. M. R. Gongora-Rubio et al., “ The utilization of low temperature co-firedceramics (LTTC-ML)technology for meso-scale EMS, a simple thermisor based flow sensor “, Sensor and Actuator A, Vol. 73, pp. 215-221, (1999).
    11. T. Rosqvist et al., “ Soft micromolding and lamination of piezoceramic thick films “, Sensor and Actuator A, Vol.97-98, pp.512-519, (2002).
    12. M. R. Gongora-Rubio et al., “ A meso-scale electro- magnetically actuated normally closed valve realized on LTCC tapes “, SPIE, Vol. 3877, pp. 230-239, (1999).
    13. L. W. Chu et al., “ Novel reaction mechanism for the synthesis of Ba2Ti9O20 materials by nano-sized intermediate materials“, Nanotechnology, Vol. 17, pp.185-191, (2005).
    14. K. Vaed et al., “ An additive micromolding approach for the development of micromachined ceramics substrates for RF application “ J. Microelectromech.anical Systems, Vol. 13, pp. 514-524,(2004).
    15. B. Su et al., ” Embossing of 3D ceramic microstructures “, Microsystem Technologies, Vol.8, pp. 359-362, (2002).
    16. R. Knitter et al., ” Ceramic microstructures and potential applications “, Microsystem Technologies, Microsystem Technologies, Vol. 2 , pp.135-138,(1996).
    17. R. Knitter et al., “ Preparation of ceramic microstructure “, Ceramic Forum International:CFI / Berichte der DKG, Vol. 71 pp. 549-556., (1994).
    18. T. A. Vanderah , “ Material science:talking ceramics “, science, Vol.298, p.1182-1184 ,(2002).
    19. C. L. Huang et al., “ Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions “, Mater. Res. Bull., Vol.35, pp.2445-2456,(2000).
    20. R. Ubic et al., “ Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2 “, Inter. Mater. Rev., Vol.43, pp.205-219 ,(1998).
    21. 吳朗, 電子陶瓷-介電, 全欣科技圖書, (1994).
    22. Darko Kajfez,Pierre Guillon, "Dielectric Resonators", University of Mississippi.
    23. W. S. Kim et al., “ Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives “ , Jpn. J. Apl. Phys. Vol.37, pp.5367-5371, (1998).
    24. D. A. Sagala et al., “ Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba(Zn1/3Ta2/3)O3, J. Am. Ceram. Soc., Vol.75, pp.2573-2575,(1992).
    25. Junichi Takahashi et al., “ Microwane dielectric properties of lanthanide titanate ceramics “, Vol.32, pp.4327-4331,(1993).
    26. K. Wakine "Recent Development of Dielectric Resonator Materials and filters in Japan", Ferroelectrics, Vol.91, pp.69-86, (1989).
    27. 李標榮, 王筱珍, 張緒禮, 無機電介質, 華中理工大學出版社, 武昌, pp.154-166, (1995).
    28. 宋英, 王福平, 周玉, 微波介質陶瓷材料的研究進展, 材料科學與工藝(大陸期刊), Vol.6, pp.59-63, (1998).
    29. K. Wakino et al., “ Dielectric resonator materials and their applications for mobile communication systems “, Br. Ceram. Trans. J., Vol.89, pp.39-43, (1990).
    30. 何進, 楊傳仁, 微波介質陶瓷材料綜述, 電子元件與材料(大陸期刊), Vol.14, pp.7-13, (1995).
    31. 郭秀芬, 陶瓷介質在微波技術中的應用, 壓電與聲光(大陸期刊), Vol.12, pp.40-47, (1990).
    32.王惠傑, 通訊用介電陶瓷材料與元件, 工業材料, 115期, pp.74~79, (1996).
    33. R. C. Kell et al., ” High Permittivity Temperature-Stable Ceramic
    Dielectric with low Microwave loss ”, J.Am.Ceram.Soc., Vol.56, pp.352-354, (1973).
    34. T. Yamaguchi et al., “ Newly Developed Ternary (Ca,Sr,Ba) Zirconate Ceramic System for Microwave Resonator ”, Ferro-electrics, Vol.27, pp.273-276, (1980).
    35. G.Wolfram. et al., “ Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics(x+y+z=2) ”, Met. Res. Bull., Vol.16, .pp.1455-1463, (1981).
    36. P. C. Osbond et al., “ The Properities and Microwave Application of Zirconnium Titanate Stannate Ceramics ”, Brit. Ceram. Proc., Vol.36, pp.167-168, (1985).
    37. K. Wakino. et al., “ Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators ”, J. Am. Ceram. Soc., V.67, pp.167-178, (1984).
    38. S. Kawashima et al., “ Dielectric Properties of Ba(Zn1/3Nb2/3)O3- Ba(Zn1/3Ta2/3)O3 Ceramics ”, Proc. Ferroelectr. Mater. Appl. Japan., Vol.1, pp.1455-1463, (1977).
    39. S. Nomura et al., “ Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature- Stable High Dielectrics Constant and Low Microwave Loss ”., Jpn. J. App. Phys., Vol.21, pp.L624-L626, (1982).
    40. H. M. O'Bryan and J.Thomson, JR , “ Phase Equilibrium in the TiO2-rich Region of the System BaO-TiO2 ”, J. Amer. Ceram. Soc., Vol.57, pp.522~526, (1974).
    41. H. M. O'Bryan , J. Thomson, JR and J. K. Plourde, “ A New BaO-TiO2 compound With Temperature-Stable High Permittivity and Low Microwave Loss ”, J. Amer. Ceram. Soc., Vol.57, pp.450~453, (1974).
    42. G. D. Fallon and B. M. Gatehouse , “ The Crystal Structure of Ba2Ti9O20 : A Hollandite Related Compound ”, J. Solid State Chem., 49 pp.59-64, (1983).
    43. H. M. O'Bryan , W. H. Grodkiewicz , and J. L. Bernstein , “ Preparation and Unit-Cell Paramaters of Single Crystals of Ba2Ti9O20 ”,J. Am. Ceram. Soc., Vol.63, pp.309~310, (1979).
    44. G. Grzinic and L. A. Bursill , “ The Hollandite-Related Strucrure of Ba2Ti9O20 ”, J. Solid State Chem., Vol.47, pp.151-163, (1983).
    45. E. Tillmanns et al., “ Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9 O20 ” , J. Am. Ceram. Soc., Vol.66, pp.268-170, (1983).
    46. D. E. Roy et al., “ Phase equilibria in the system BaO-TiO2 ”, J. Am. Ceram. Soc., Vol.38, pp.102-113, (1955).
    47. J. K. Plourde et al., “Ba2Ti9O20 as a microwave dielectric resonator “, J. Am. Ceram. Soc., Vol.58, pp.418-420, (1975).
    48. G. H. Jonker and W. Kwestroo , “ Ternary System BaO-TiO2-SnO2 and BaO-TiO2-ZrO2 ”, J. Am. Ceram. Soc., Vol.41, pp.390-394, (1958).
    49. W. Y. Lin et al., “ Microwave properties of Ba2Ti9O20 doped with Zirconium and Tin oxides “, J. Am. Ceram. Soc., Vol.82, pp.1207-1211, (1999).
    50. G. Pfaff, “ Preoxide route to synthesize Ba2Ti9O20 “, J. Mater. Sci. Lett., Vol.12, pp.32-34,(1993).
    51. J. M. Wu and H. W. Wang et al., “ Factors affecting the formation of Ba2Ti9O20 “, J. Am. Ceram. Soc., Vol.71, pp.869-875, (1988).
    52 韓家平, 張緒禮, 王筱珍等, “ BaO-TiO2 系中Ba2Ti9O20 相形成的研究 “, 矽酸鹽學報(大陸期刊), Vol.24, pp.173-178,(1996).
    53. C. M. Cheng, “Sintering BaTi4O9/Ba2Ti9O20-based ceramics by glass addition”, J. Euro. Ceram. Soc., Vol.20, pp.1061-1067,(2000).
    54. D. S. Tsai and E. P. Chang, “ Calcination and sintering of Ba2Ti9O20 alkoide-derived powder “, J. Mater. Sci. Lett., Vol.8, pp.1291-1293,(1989).
    55. 姚堯, 趙梅瑜, 王依琳等, “ 固相合成製備單相Ba2Ti9O20 粉體及陶瓷 “, 矽酸鹽學報(大陸期刊), Vol.26, pp.796-801,(1998).
    56. T. Jaakola, A. Uusimäki and S. Leppävuori , “ Importance of Homogeneous Composition in Sintering Behaviour of Ba2Ti9O20 Ceramics ”, Int. J. Hight Technology Cermics,Vol.2, pp.195-206, (1986).
    57. D. Hennings and P. Schnabel, “ Dielectric characterization of Ba2Ti9O20 type ceramics at microwave frequencies “, Philips Journal of Research, Vol.38, Vol.295-311,(1983).
    58. H. M. O’Bryan et al., ” Ba2 Ti9O20 phase equilibria ”, J. Am. Ceram. Soc., Vol.66, p.66-68,(1983).
    59. T. Negas , R. S.Roth , H. S. Parker and D. Minor , “ Subsolidus Phase Relations in the BaTiO3-TiO2 System ”, J. Solid State Chem.,Vol.9 , pp.297-307,(1974).
    60. T. Negas et al., “BaTi4O9 / Ba2Ti9O20 – based ceramics resurrect for modern microwave applications “, American Ceramic Society Bulletin, Vol.72, pp.80-89,(1993).
    61. Y. I. Gornikov et al., “ The effect of Zinc oxide additions on the phase composition and dielectric properties of Barium Tetratitanate “, Sov. Pro. Chem., Vol.50, pp.1243-1245,(1984).
    62. S. Nomura et al., “ Effect of MnO on the dielectric properties of Ba2Ti9O20 ceramics at microwave frequency ”, Jpn. J. Appl. Phys.,Vol. 22, pp.1125-1128,(1983).
    63. C. Chatterjee et al., “ Effect of SrO addition on densification and dielectric properties of barium-nano-titanate ”, J. Mat. Sci. Let. ,Vol. 9, pp.1049-1051,(1990).
    64. T. Jaakola et al., “ Preparation of Nd-doped Ba2Ti9O20 ceramics for use in microwave applications ”, ceramic international,Vol.13, pp.151-157,(1987).
    65. K. M. Yoon et al., “ Effect of BaSnO3 on the microwave dielectric properties of Ba2 Ti9 O20 ”, J. Matter. Res. , Vol.11, pp.1996-2001,(1999).
    66. J.Yu et al., “ Effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20 “, J. Am. Ceram. Soc., Vol.77, p.1052-1056,(1994).
    67. H. M. Wang et al., “ Sing phase Ba2Ti9O20 microwave dielectric ceramics prepared by low temperature liquid phase sintering ”, J. Appl. Phys, Vol.39, pp 3528-3529,(2000).
    68. H. W. Wang et al., “ Comment on effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20 ”, J. Am. Ceram. Soc., Vol.78, pp.1134-1135,(1995).
    69. J. J. Ritter, “ Alkoxide precursor synthesis and characterization of phase in the Barium-Titanium Oxide system ”, J. Amer. Ceram. Soc., Vol.69, pp.155~162,(1986).
    70. H. C. Lu et al., “ Sol-Gel process for the preparation of Ba2Ti9O20 and Ba2Ti5O11 ”, J.Amer.Ceram.Soc., Vol.74, pp. 968~972,(1991).
    71. J. H. Choy and Y. Su. Han , “ Microwave characteristics of Bao-TiO2 ceramics prepared via a citrate route ”, J. Amer. Ceram. Soc., Vol.78 pp..69~72,(1995),
    72. J. H. Choy et al., “ Citrate route to ultra-fine Barium Polytitanates with microwave dielectric properties ”, J. Mater. Chem .,Vol. 5, pp.57~63,(1995).
    73. R. D. Purohit and A. K. Tyagi , “ Synthesis of monophasic Ba2Ti9O20 through gel combution ”, J. Mater. Chem ., Vol.12, pp.1218~1221,(2002).
    74. K. Wakino, “ Recent development of dielectric resonator materials and filters in Japan “, Ferroelectrics, Vol.91, pp.69-86,(1989).
    75. R. J. Shanefield and R. E. Mistler, “ Fine grained alumins substrates, the manufracturing processing ”, Am. Ceram. Soc. Bull. Vol.53 , pp.416-420 ,(1974).
    76. R. Capek, Multilayer ceramic capacitors, U.S.Paten No.3549415, Dec.(1970).
    77.T. Ogawa, A. Ando and K. Wakino, “ Electrostrictive properties of monolithic bimorphous actuator ”, Ferroelectrics, Vol.68, pp.249-256 (1986).
    78. L. J. Bowen, T. Shrout, W. A.Schulze, and J. V. Biggers, “Piezoelectric properties of internally electroded PZT multilayers, ” Ferroelectrics ,Vol.27 , pp.59-62, (1980).
    79. K. Mikeska and W. R. Cannon, In Ceramic Society 9, edited by J.A. Mangels and G. L. Messing., Am. Ceram. Soc. Inc. Columbus, Ohio, pp.164-183 (1984)
    80. A. Roosen, “ Basic requirement for tape casting of ceramic powder ”pp.675-692 in ceramic Transactions, Vol.1, Ceramic Powder Science IIB Edited by E. L. Messing, E. R. Fuller and H. Hansner, Amer. Ceram. Soc.(Wester VILLE, Oh, 1984).
    81. 章本華, “光子晶體、電磁能隙基本原理與在連接器產業的業用 “,工業材料雜誌, Vol.228, pp.118-133,(2005).
    82. E. Yablonovitch, ” Inhibited spontaneous emission in solid-state physicsand electronics “, Physical Review Letters, Vol.58, pp.2059-2062, (1987).
    83. S. John, “ Strong localization of photons in certain disordered dielectric superlattices “, Physical Review Letters, Vol. 58, Vol.2486-2489, (1987).
    84. J. D. Joannopoulos et al., Photonic Crystal---Molding the Flow of Light, Princeton University Press, New Jersy, (1995)
    85. E. Yablonovitch and T. J. Gmitter, ” Photonic band structure:the face-centered-cubic case “, Physical Review Letters, Vol.63, pp.1950-1953, (1989).
    86. K. M. Ho et al, ” Existence of a photonic gap in periodic dielectric structures ” , Physical Review Letters, Vol.3152-315565 ,(1990).
    87. E Yablonovitch and T. J. Gmitter, ” Photonic band structure: The face-centered-cubic case employing nonspherical atoms “, Physical Review Letters, Vol.67, pp.2295-2298, (1991).
    88. 劉修源, 電磁晶體模擬計算分析與元件設計, 國立清華大學 -- 碩士論文, 新竹,(2005).
    89. M. Plihal et al., “Two-dimensional photonic band structure ” , Optics Communications Vol. 80, pp.199-204,(1991).
    90. M. Plihal, and A. A. Maradudin, “Photonic band structure of two-dimensional systems:the triangular lattice “, Phys. Rev. B , Vol. 44, pp. 8565-8571, (1991).
    91. P. R. Villeneuve and M. Piche, ” Photonic band gap in two-dimensional square and hexagonal lattices ”, Phys. Rev. B, Vol.46, pp. 4969-4972 (1992).
    92. S. G. Johnson, J. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kodziejski, “ Guided modes in photonic crystal slabs ” , Phys. Rev. B , Vol. 60, pp.5751-5758, (1999).
    93. R. F. Jimenez Broas et al., “ A high-impedance ground plane applied to a cellphone handsetgeometry “, IEEE Trans. Microwave Theory Tech.,Vol.49, pp.1262-1265,(2001).
    94. F. Bilotti et al., “ On EBG structures for cellular phone applications “, AEU Int. J. Electron. Commun., Vol.57, pp.403-408,(2003).
    95. E. R. Brown et al., ” Radiation properties of a planar antenna on a photonic-crystal substrate “, J. Opt. Soc. Am. B, Vol.10, pp.404-407,(1993).
    96. E. R. Brown, Highly efficient planar antenna on a periodic dielectric structure, U.S,Patent No.5386215, (1995).
    97. W. M. Robertson and G. Arjavalingam, “ Measurement of photonic band structure in a two-dimensional periodic dielectric array “, Vol.68, pp.2023-2026,(1992).
    98. M. Schuster and N. Klein,” Controlled excitation of electromagnetic band-gap ine and point defect modes at microwave frequencies “, Vol.93, pp.3182-3187,(2003).
    99. T. J. Ellis and G. M. Rebeiz:, “MM-wave tapered slot antennas on micromachined photonic bandgapdielectrics “, Microwave Symposium Digest, IEEE MTT-S International, Vol.2, pp.1157-1160,(1996).
    100. H. Kitahara, N. Tsumura, H. Kondo et al., “Terahertz wave dispersion in two-dimensional photonic crystals ”, Phys. Rev. B., Vol.64, pp.045202-1 to 045202-7,(2001).
    101. S. Rowson, A. Chelnokov , J.J. Lourtioz,et al., Proc. EUROPTO Conf. Terahertz Spectroscopy, 3823, pp.293,(1999).
    102. E. Ozbay, et al..,” Laser-micromachined millimeter-wave photonic band-gap cavity structures “, Appl. Phys. Lett., Vol.67, pp.1969-1971,(1995).
    103. B. Su et al., “ Micropatterning of fine scale ceramic structures “, J. Mat. Sci. Vol.37, pp.3123-3126,( 2002).
    104. U. Schoenholzer et al.,” Miicropatterned ceramics by casting into polymer mold “, J. Am. Ceram. Soc. , Vol.85, pp.1885-1887,(2002).
    105. V. Piotter et al., “ Injection molding and related techniques for fabrication of microstructures “, Microsyst. Techn., Vol.3, pp.129-133(1997),
    106. S. Lin et al., “A Three-Dimensional Optical Photonic Crystal “, J. Lightwave Techn. ,Vol.17, pp.1944-1947,(1999).
    107. P-A Clerc et al.,” Advanced deep reactive ion etching: a versatile tool for microelectromechanical systems ”, J. Micromech. Microeng.,Vol. 8, pp. 272–278, (1998).
    108. N. Jukam et al., “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si ” , Appl. Phys. Lett., Vol.83, pp.21-23,(2003).
    109. A. Chelnokov et al., “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etchingofmacroporoussilicon “ Appl. Phys. Lett., Vol.77, pp.2943-2945,( 2000).
    110. P. Ferrand et al., ” Photonic band-gap properties of a porous silicon periodic planar waveguide “, Phys. Rev. B, Vol.63, pp.115106-1 to 115106-4,( 2001).
    111. A. Birner et al., “ Silicon-Based Photonic Crystals “, Adv. Mater., Vol.13, pp.377-388,(2001).
    112. J. Schilling et al., “ A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon “, J. Opt. A, Vol.3, pp.S121-S132, (2001).
    113. M. C. Wanke et al., ” Laser rapid prototyping of photonic band-gap microstructures “,Science, Vol.275, pp.1284-1286,(1997).
    114. Y. Chen et al., “ Simulation, fabrication, and characterization of 3-D alumina phtonic crystal bandgap structures”, Microwave and Optical Technology letters, Vol.30,pp.305-307,(2001).
    115. M. E. Pilleux et al., “ 3-D photonic bandgap structures in the microwave regime by fused deposition of multimaterials “, Rapid Prototyping Journal, Vol.8, pp.46-52,(2002).
    116. P. G. Clem et al., “ Matertials for freeform fabrication of GHz tunable dielectric photonic crystals ”, Mat. Res. Soc. Symp. Proc., Vol.758, pp41-46,(2003).
    117. C. J. Reilly., “ High-frequency electromagnetic bandgap structures via indirect solid freeform “, J. Am. Ceram., Vol.87, pp.1446-1453,(2004).
    118. H. Yin et al., “ Development of 3D ceramic photonic bandgap structures ”, Key Engineering Materials, Vol.280-283, pp.533-536(2005).
    119. Y. Miyamoto eet al., “ Smart processing development of photonic crystals and fractals “, International Journal of Applied Ceramic Technology, Vol.1, pp.40-48,(2004).
    120. H. Yin et al., “ Fabrication of ceramic photonic crystals with diamond structure for microwave applications “, J. Am. Ceram., Vol.87, pp.1598-601,(2004).
    121. S. Kirihara et al., “ Electromagnetic wave control of ceramic/resin photonic crystals with diamond structure ”, Science and Technology of Advanced Materials, Vol.5, pp.225-230,(2004).
    122. G. F. Feiertag et al., “ Fabrication of photonic crystals by deep X-ray lithography “, Appl. Phys. Lett., Vol.71, pp.1441-1443,(1997).
    123. M. Shirane et al., “ Coupled Waveguide Devices Based on Autocloned Photonic Crystals “ , Jap. J. Appl. Phys., Vol.43, pp.1986-1989,(2004).
    124. S. Kawakami et al., ” Waveguide and guided-wave devices consisting of heterostructured photonic crystals ”, Proceedings of SPIE -- Volume 4870, Active and Passive Optical Components for WDM Communications II, Achyut K. Dutta, Abdul Ahad S. Awwal, Niloy K. Dutta, Katsunari Okamoto, Editors, July 2002, Proc. SPIE Int. Soc. Opt. Eng., pp. 279-288,(2002),
    125. N. Klein et al., “ Ceramic electromagnetic bandgap structures for microwave and millimeter wave applications “, J. Eur. Ceram. Soc, Vol.23.pp.2449-2453,( 2003).
    126. R. Elsebrock et al., “ A laboratory scale moulding technique to fabricate high precision 2D columnar and honeycomb structures ”, Materials Letters, Vol.58, pp.3945-3947,(2004).
    127. Juan Carlos Iriarte Galarregui et al., “ High-K EBG substrates for phase-array patch-antenna configurations ”, Microwave Optical Technology Letters, Vol.43, pp.527-532,(2004).
    128. S. Kirihara and Y. Miyamoto, “ Fabrication of ceramic-plymer photonic crystals by stereolithography and their microwave properties “, J. Am. Ceram. Soc., Vol.85, pp.1369-1371,(2002).
    129. M. Notomi et al., “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap “, Appl. Phys. Lett., Vol.77, pp.4256-4258,( 2000).
    130. S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region ” , Physica B: physics of condensed matter, Vol.279, pp.142-149,(2000).
    131. S. Noda et al., “ Optical properties of three-dimensional photonic crystals based on III–V semiconductors at infrared to near-infrared wavelengths ”, Appl. Phys. Lett., Vol.75, pp.905-907, (1999).
    132. R. K. Lee et al., “ Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab “, J. Opt. Soc. Am. B. 2000, Vol.17, pp.629-633, (2000).
    133. R. A. Shelby et al., ” Experimental Verification of a Negative Index of Refraction “, Science, Vol.292, pp.77-79,(2001).
    134. D. F. Sievenpiper, High-impedance electromagnetic surface, University of California, Ph. D. Thesis, (1999).
    135. 宋文仙、黃曉岳、李宏強等, “ 平面金屬-電介質光子帶隙結構的表面電磁波傳輸特性 ”, 微波學報(大陸期刊), Vol.19, pp.57-60,
    (2003).
    136. Yu Ji et al., “ High–whispering gallery mode dielectric resonator bandgap filter with microstrip line coupling and photonic bandgap mode-suppression “, IEEE Microwave and guided wave letters,
    Vol.10, pp.310-312,(2000).
    137. C. A. Kyriazidou et al., “ Monolithic waveguide filters using printed techniques “, IEEE Transaction on Microwave Theory and Techniques,Vol.49, pp.297-307,(2001).
    138. Ramon Gonzalo et al., ” Improved patch antenna performance by using photonic bandgap substrates “, Microwave and Optical Technology Letters, Vol.24, pp.213-215,(2000).
    139. K. Agi et al., “The effects of an electromagnetic crystal substrate on a microstrip patch antenna ”, IEEE Transactions on Antennas & Propagation, Vol.50, pp.451-456,(2002).
    140. S.Y. Lin et al., “ A conical-pattern annular-ring microstrip antenna with a photonic bandgap ground plane “, Microwave and Optical Technology Letters, Vol.30, pp.159-161,(2001).
    141. Ramon Gonzalo et al., ” Enached patch-antenna performance by suppressing surface waves using photonic-bandgap substrates “, IEEE Transactions on Microwave Theory and Techniques, Vol.47, pp.2131-2138,(2000).
    142. J. B. Rizket et al., “ Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates “, IEEE Transactions on Antennas & Propagation, Vol.50, pp.379-383,(2002).
    143. D. Sievenpiper et al., “ High-impedance electromagnetic surfaces with a forbidden frequency band “, IEEE Transactions on Microwave Theory and Techniques, Vol.47, pp.2059-2074,(1999).
    144. M. Qiu et al., “ High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover “, Microwave and Optical Technology Letters, Vol.30, pp.41-44,(2001).
    145. M. Thevenot et al., “ Design of a new photonic cover to increase antenna directivity “, Microwave and Optical Technology Letters, Vol.22, pp.136-139,(1999).
    146. M. Thevenot et al., “Directive photonic-bandgap antennas “, IEEE Transactions on Microwave Theory and Techniques, Vol.47, pp.2115-2122,(1999).
    147. C. Serier et al., “ 1-D photonic bandgap resonator antenna ”, Microwave and Optical Technology Letters, Vol.29, pp.312-315,(2001).
    148. P. S. Hui et al., “ Microstrip patch antenna with annular ring EBG ”, Microwace Conference, 2000 Asia-Pacific, pp.1347-1351,(2000).
    149. Y. Horii and M. Tsutsumi, “ Harmonic control by photonic bandgap on microstrip patch antenna “, IEEE Microwave and Wave Letterrs, Vol.9, pp.13-15,(1999).
    150. .B, Temelkuran, “ Photonic crystal-based resonant antenna with a very high directivity “, American Physical Society , Annual Meeting,March 20-24, 2000,Minneapolis, MN.
    151. Y J. Park, et al., “A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas “, IEEE Transactions on microwave theory. and technology, Vol.49, pp.1854-1859,(2001).
    152. F. R. Yang et al, “ A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit “, IEEE Transaction on microwave theory and technology, Vol. 47, pp.1509-1514,(1999).
    153. Kawakami, “ Fabrication and application of three-dimensional photonic crystals ”, Trans. Inst. Electron.,Inf. Commun. Eng. Sect. E., Vol.81, pp.1063-1066,(1988).
    154. K. Busch et al., Photonic crystal:advanced in design, fabrication, and characterization, WIELY-VCH,(2004).
    155. R. S. Roth et al., “ Phase-equilibria and crystal-chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitanates “, J. Solid State Chem, Vol.104, pp.99-118,(1993).
    156. W. T. Huang et al., “ Microwave dielectric properties of LTCC materials consisting of glass- Ba2Ti9O20 composites “, J. Euro. Ceram. Soc., Vol.23, pp2559-2563,(2003).
    157. A. R. Weily et al., “ A planar resonator antenna based on a woodpile EBG material ”, IEEE Transactions on Antennas and Propagation, Vol.53, pp.216-223,(2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE