簡易檢索 / 詳目顯示

研究生: 陳玠權
Chen, Chieh-Chuan
論文名稱: 在氬氣中單色及雙色雷射誘導電漿增強之諧波產生及真空紫外光發射之研究
One-Color and Two-Color Laser Generated Harmonics and VUV Emission with Plasma Enhancement in Argon
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 賴暎杰
Lai, Yin-Chieh
張存續
Chang, Tsun-Hsu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 77
中文關鍵詞: 高階諧波產生真空紫外光發射頻譜電漿增強之三階諧波訊號波型合成系統Q-開關釹-雅各雷射雙色奈秒雷射PPT 模型氬氣電漿
外文關鍵詞: high harmonic generation, VUV emission spectra, plasma enhanced third harmonic signal, waveform synthesis system, Q-switch Nd:YAG laser, two-color nanosecond laser, Perelomov-Popov-Terent’ev (PPT) model, argon plasma
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以微擾非線性光學為基礎,雙色雷射(基頻ω,二倍頻2ω)在各向同性介質的氬氣中產生之三階諧波來自於兩種非線性過程:直接三倍頻,四波混頻。此兩種非線性過程的干涉也會同時影響三階諧波訊號的產生。如果在高強度的雷射電場中,氬氣將被游離而形成電漿,電漿的密度在多光子電離的範圍裡能以Perelomov-Popov-Terent’ev (PPT)模型來估算,其密度與雷射的瞬時電場強度及震盪頻率有關。在假設三階非線性極化率和相位失配為電漿密度函數的條件下,我們成功模擬出電漿增強之三階諧波產生。其結果與利用波長為1064 nm 的Nd:YAG雷射以及其二倍頻532 nm在氬氣室中產生的三階諧波之實驗相互吻合。我們也預測了在雙色雷射激發時,三階諧波訊號的相位調控不僅來自於三倍頻與四波混頻的干涉的貢獻,還包括了被合成波型影響的電漿密度。我們也觀察到以雙色雷射激發氬氣產生的高階諧波訊號較用單一波長激發時為強,此結果同樣能利用電漿密度因雙色激發的提升解釋。


    According to the theory of perturbative nonlinear optics, the third harmonic signal generated in argon gas by two-color laser field (ω and 2ω) is contributed by two processes, namely, direct third harmonic generation (DTHG) by the ω beams, four wave mixing (FWM) by ω and 2ω beams. The interference between above two processes also affect the third harmonic signal. In intense laser field, plasma can be generated through the ionization process. In the multiphoton ionization region, the plasma density is estimated by the Perelomov-Popov-Terent’ev (PPT) model where the instantaneous electric field and frequency of laser are taken into account. Under the assumption that susceptibility and wave-vector mismatch depend on the plasma density, we show that plasma plays a significant role in the third harmonic signal. The simulation results are in good agreement with the experimental data in argon by employing the fundamental (1064 nm) and second harmonic (532 nm) fields of an injection-seeded Q-switched Nd:YAG laser. We also show that, phase modulation of the third harmonic signal is not only due to the interference term of DTHG and FWM but also affected by the variation of plasma density in two-color laser field. In another experiment, the two-color enhancement of high harmonic generation and vacuum ultraviolet (VUV) emission in argon can also be explained by the enhancement of ionization rate by the two-color laser field.

    中文摘要 I Abstract II 致謝 III Table of Contents IV List of Figure VI Chapter 1 Introduction 1 Chapter 2 Motivation 4 Chapter 3 Theory 4 3.1 Nonlinear Optics 5 3.2 Third-Order Polarization 8 3.2.1 Sum-Frequency Process (SFG) 9 3.2.2 Four-Wave Mixing Process (FWM) 10 3.2.3 Third Harmonic Generation with Plane-Wave Approximation 11 3.2.4 Phase Mismatch: Argon 13 3.3 Tunneling Ionization and Multiphoton Ionization 15 3.3.1 The Keldysh Theory 16 3.3.2 Perelomov-Popov-Terent’ev (PPT) Model 17 3.3.3 Ammosov-Delone-Krainov (ADK) Model 20 3.3.4 ADK Model: Two-Color Laser Field 22 3.4 High Harmonic Generation (HHG) 24 3.4.1 Three Step Model 25 3.4.2 Three Step Model: Single-Color Laser Field 26 3.4.3 Three Step Model: Two-Color Laser Field 29 Chapter 4 Simulation of Plasma Enhancement 32 4.1.1 Plasma Enhancement of Third Harmonic Signal by Two-Color Nanosecond Pulse in Argon 35 4.1.2 Phase Modulation of Third Harmonic Signal by Two-Color Femtosecond Pulse in Argon Plasma 43 Chapter 5 Experimental Setup 47 5.1 Laser System 48 5.2 Waveform Synthesis 51 5.2.1 Amplitude Modulator 53 5.2.2 Phase Modulator 55 5.2.3 Telescope & Focal Lens System 58 5.3 Vacuum System 59 5.4 Detector 63 5.5 Time Delay Controller 65 Chapter 6 Experimental Result 66 6.1 HHG of Helium and Argon 68 6.2 Two-Color Enhancement of HHG 69 Chapter 7 Conclusion 71 Chapter 8 Future Work 73

    1. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, "Tailoring a 67 attosecond pulse through advantageous phase-mismatch," Optics letters 37(18), 3891-3893 (2012)
    2. M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology," Nature 414(6863), 509-513 (2001)
    3. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, "Single-Cycle Nonlinear Optics," Science 320(5883), 1614-1617 (2008)
    4. E. Cormier and M. Lewenstein, "Optimizing the efficiency in high order harmonic generation optimization by two-color fields," The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 12(2), 227-233 (2000)
    5. J. Mauritsson, J. Dahlström, E. Mansten, and T. Fordell, "Sub-cycle control of attosecond pulse generation using two-colour laser fields," Journal of Physics B: Atomic, Molecular and Optical Physics 42(13), 134003 (2009)
    6. M. Negro, C. Vozzi, K. Kovacs, C. Altucci, R. Velotta, F. Frassetto, L. Poletto, P. Villoresi, S. De Silvestri, and V. Tosa, "Gating of high‐order harmonics generated by incommensurate two‐color mid‐IR laser pulses," Laser Physics Letters 8(12), 875-879 (2011)
    7. K.J. Schafer and K.C. Kulander, "Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic," Physical Review A 45(11), 8026-8033 (1992)
    8. D.A. Telnov, J. Wang, and S.-I. Chu, "Two-color phase control of high-order harmonic generation in intense laser fields," Physical Review A 52(5), 3988-3996 (1995)
    9. Z. Zeng, Y. Zheng, Y. Cheng, R. Li, and Z. Xu, "Attosecond pulse generation driven by a synthesized laser field with two pulses of controlled related phase," Journal of Physics B: Atomic, Molecular and Optical Physics 45(7), 074004 (2012)
    10. W. Chen, H. Wang, R. Lin, C. Lee, and C. Pan, "Attosecond pulse synthesis and arbitrary waveform generation with cascaded harmonics of an injection-seeded high-power Q-switched Nd: YAG laser," Laser Physics Letters 9(3), 212 (2012)
    11. W.-J. Chen, Z.-M. Hsieh, S.W. Huang, H.-Y. Su, C.-J. Lai, T.-T. Tang, C.-H. Lin, C.-K. Lee, R.-P. Pan, and C.-L. Pan, "Sub-single-cycle optical pulse train with constant carrier envelope phase," Physical review letters 100(16), 163906 (2008)
    12. W. Chen, R. Lin, W. Chen, C. Lee, and C. Pan, "Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field," Laser Physics Letters 10(6), 065401 (2013)
    13. K. Hartinger and R.A. Bartels, "Enhancement of third harmonic generation by a laser-induced plasma," Applied Physics Letters 93(15), 151102 (2008)
    14. X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, and H. Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air," Applied Physics Letters 95(11), 111103 (2009)
    15. S. Suntsov, D. Abdollahpour, D.G. Papazoglou, and S. Tzortzakis, "Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air," Optics express 17(5), 3190-3195 (2009)
    16. S. Suntsov, D. Abdollahpour, D. Papazoglou, and S. Tzortzakis, "Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility," Physical Review A 81(3), 033817 (2010)
    17. W.-F. Chen, Four-wave mixing with two color excitation in argon: the relative phase effect, in Department of physics. National Tsing-Hua University. (2012)
    18. L. Keldysh, "Diagram technique for nonequilibrium processes," Sov. Phys. JETP 20(4), 1018-1026 (1965)
    19. A. Perelomov, V. Popov, and M. Terent’ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23(5), 924-934 (1966)
    20. A. Perelomov, V. Popov, and M. Terent’ev, "Ionization of atoms in an alternating electric field: II," Sov. Phys. JETP 24(1), 207-217 (1967)
    21. A. Perelemov and V. Popov, "Ionization of atoms in alternating electric field. III," Soviet Physics. JETP 25, 336-343 (1967)
    22. U. Andiel, G. Tsakiris, E. Cormier, and K. Witte, "High-order harmonic amplitude modulation in two-colour phase-controlled frequency mixing," EPL (Europhysics Letters) 47(1), 42 (1999)
    23. I.J. Kim, C.M. Kim, H.T. Kim, G.H. Lee, Y.S. Lee, J.Y. Park, D.J. Cho, and C.H. Nam, "Highly Efficient High-Harmonic Generation in an Orthogonally Polarized Two-Color Laser Field," Physical Review Letters 94(24), 243901 (2005)
    24. I.J. Kim, G.H. Lee, S.B. Park, Y.S. Lee, T.K. Kim, C.H. Nam, T. Mocek, and K. Jakubczak, "Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field," Applied Physics Letters 92(2), - (2008)
    25. T. Liu, T. Kanai, T. Sekikawa, and S. Watanabe, "Significant enhancement of high-order harmonics below 10 nm in a two-color laser field," Physical Review A 73(6), 063823 (2006)
    26. R. Mahon, T.J. McIlrath, V.P. Myerscough, and D.W. Koopman, "Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α," Quantum Electronics, IEEE Journal of 15(6), 444-451 (1979)
    27. W. Chan, G. Cooper, X. Guo, G. Burton, and C. Brion, "Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution. III. The photoabsorption of argon, krypton, and xenon," Physical Review A 46(1), 149 (1992)
    28. J. Berkowitz, Photoabsorption, photoionization, and photoelectron spectroscopy. Academic Press. (2012)
    29. G. Marr and J. West, "Absolute photoionization cross-section tables for helium, neon, argon, and krypton in the VUV spectral regions," Atomic Data and Nuclear Data Tables 18(5), 497-508 (1976)
    30. S. Haessler, J. Caillat, and P. Salieres, "Self-probing of molecules with high harmonic generation," Journal of Physics B: Atomic, Molecular and Optical Physics 44(20), 203001 (2011)
    31. C. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese, "Strong-field rescattering physics—self-imaging of a molecule by its own electrons," Journal of Physics B: Atomic, Molecular and Optical Physics 43(12), 122001 (2010)
    32. M. Lein, "Molecular imaging using recolliding electrons," Journal of Physics B: Atomic, Molecular and Optical Physics 40(16), R135 (2007)
    33. N.B.D. G.S. Voronov, Sov. Phys. JETP Lett. 1, 66 (1965)
    34. N.B. Delone, "Multiphoton ionization of atoms," Soviet Physics Uspekhi 18(3), 169 (1975)
    35. G. Mainfray and G. Manus, "Multiphoton ionization of atoms," Reports on progress in physics 54(10), 1333 (1991)
    36. S. Chin, F. Yergeau, and P. Lavigne, "Tunnel ionisation of Xe in an ultra-intense CO2 laser field (1014 W cm-2) with multiple charge creation," Journal of Physics B: Atomic and Molecular Physics 18(8), L213 (1985)
    37. V.S. Popov, "Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)," Physics-Uspekhi 47(9), 855 (2004)
    38. N.B. Delone and V.P. Krainov, "Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field," Physics-Uspekhi 41(5), 469-485 (1998)
    39. P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Physical review letters 62(11), 1259 (1989)
    40. D. Schumacher, F. Weihe, H. Muller, and P. Bucksbaum, "Phase dependence of intense field ionization: a study using two colors," Physical review letters 73(10), 1344 (1994)
    41. H. Muller, A. Tip, and M. Van der Wiel, "Ponderomotive force and AC Stark shift in multiphoton ionisation," Journal of Physics B: Atomic and Molecular Physics 16(22), L679 (1983)
    42. N.H. Burnett, H.A. Baldis, M.C. Richardson, and G.D. Enright, "Harmonic generation in CO2 laser target interaction," Applied Physics Letters 31(3), 172-174 (1977)
    43. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I. McIntyre, K. Boyer, and C.K. Rhodes, "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases," JOSA B 4(4), 595-601 (1987)
    44. P.B. Corkum, "Plasma perspective on strong field multiphoton ionization," Physical Review Letters 71(13), 1994-1997 (1993)
    45. K.C. Kulander, K.J. Schafer, and J.L. Krause, Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion, in Super-Intense Laser-Atom Physics, B. Piraux, A. L’Huillier, and K. Rzążewski, Editors., Springer US. p. 95-110. (1993)
    46. A. Fedotov, S. Gladkov, N. Koroteev, and A. Zheltikov, "Highly efficient frequency tripling of laser radiation in a low-temperature laser-produced gaseous plasma," JOSA B 8(2), 363-366 (1991)
    47. L.-B. Feng, X. Lu, T.-T. Xi, X.-L. Liu, Y.-T. Li, L.-M. Chen, J.-L. Ma, Q.-L. Dong, W.-M. Wang, and Z.-M. Sheng, "Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot," Physics of Plasmas (1994-present) 19(7), 072305 (2012)
    48. A. Fridman and L.A. Kennedy, Plasma physics and engineering. CRC press. (2004)
    49. C. Rodríguez, Z. Sun, Z. Wang, and W. Rudolph, "Characterization of laser-induced air plasmas by third harmonic generation," Optics express 19(17), 16115-16125 (2011)
    50. G. Rodriguez, A.R. Valenzuela, B. Yellampalle, M.J. Schmitt, and K.-Y. Kim, "In-line holographic imaging and electron density extraction of ultrafast ionized air filaments," JOSA B 25(12), 1988-1997 (2008)
    51. S. Tzortzakis, M. Franco, Y.-B. André, A. Chiron, B. Lamouroux, B. Prade, and A. Mysyrowicz, "Formation of a conducting channel in air by self-guided femtosecond laser pulses," Physical Review E 60(4), R3505 (1999)
    52. Z. Chang, "Fundamentals of Attosecond Optics," (2011)
    53. U. Sapaev, A. Husakou, and J. Herrmann, "Combined action of the bound-electron nonlinearity and the tunnel-ionization current in low-order harmonic generation in noble gases," Optics Express 21(21), 25582-25591 (2013)
    54. J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, "LASER OSCILLATIONS IN Nd‐DOPED YTTRIUM ALUMINUM, YTTRIUM GALLIUM AND GADOLINIUM GARNETS," Applied Physics Letters 4(10), 182-184 (1964)
    55. Spectra-Physics, Quanta-Ray PRO-Series Pulsed Nd:YAG Lasers User's Manual (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE