簡易檢索 / 詳目顯示

研究生: 鄭亭菩
Cheng, Ting-Pu
論文名稱: 以超快時間解析螢光光譜研究烯烴類-四氰基乙烯錯合物之分子間電荷轉移動力學
Ultrafast Time-Resolved Fluorescence Studies of Intermolecular Charge Transfer Dynamics in Olefin-Tetracyanoethylene Complexes
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 王念夏
Wang, Niann-Shiah
朱立岡
Chu, Li-Kang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 134
中文關鍵詞: 超快時間解析螢光光譜電子轉移飛秒雷射
外文關鍵詞: time resolved fluorescence, femtosecond laser, charge transfer
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用實驗室自行架設的光學克爾光閘超快時間解析螢光光譜系統(time-resolved optical Kerr gating fluorescence spectroscopy)及超快瞬態吸收光譜儀研究一系列電子給體-受體(electron donor-acceptor, EDA)錯合物的電荷轉移動力學(Charge transfer , CT)。本論文主要研究四種具單一雙鍵但不同游離能之烯烴類(olefin)電子給體與四氰基乙烯(TCNE)形成之錯合物溶於二氯甲烷及四氯甲烷溶劑中的電子轉移動力學,並結合實驗室前人對一系列芳香類(arene)-四氰基乙烯錯合物的研究結果做討論,比較此兩種類型的電子給體與TCNE形成之錯合物之動力學過程。研究之烯烴分子為1-hexene, 2-hexene, 1-methylcyclohexene, 2,3-dimethyl-2-butene。吾人藉由測量靜態吸收光譜與螢光光譜來測量錯合物的電荷轉移吸收譜帶(CT band)與放光波長,並根據測量結果選擇適當的激發波長及偵測範圍,來觀察錯合物激發態的時間解析螢光光譜。經由總體放光強度隨時間變化函數P(t)分析,吾人認為錯合物激發態的淬息途徑有兩步驟,錯合物被雷射激發至激發態後,經由快速的solvation、能量緩解至較低的結構(此為次皮秒的過程),接著以電荷再結合的方式回到基態(數個皮秒以內)。在極性溶劑二氯甲烷中,電荷再結合的時間約2~3 ps,而在非極性的四氯化碳中電荷再結合的時間約10~20 ps。由olefin-TCNE與arene-TCNE的結果比較,吾人發現,此系列之olefin-TCNE錯合物的電荷再結合速率比同能隙(energy gap)之arene-TCNE錯合物約快一個數量級,且皆屬於非平衡電子轉移行為,超快時間尺度的淬息會與其他能量鬆弛途徑做競爭,因此在靜態螢光光譜中,吾人發現olefin-TCNE錯合物的Stokes shift比arene-TCNE的還要小許多。吾人認為這兩種系統最大的差別在於電子耦合強度的大小,olefin-TCNE錯合物之電子耦合的強度較大,能增快其電子轉移速率,且電荷再結合速率似乎已接近極(<3ps),因此對-∆G0之依賴性較小。


    We studied the charge-transfer (CT) state relaxation dynamics of a series of electron donor-acceptor (EDA) complexes with broadband ultrafast time-resolved fluorescence spectroscopy implemented by optical Kerr gating and transient absorption spectroscopy. The EDA complexes studied here are those containing various olefins (1-hexene, 2-hexene, 1-methylcyclohexene, 2,3-dimethyl-2-butene) as the donor and tetracyanoethylene (TCNE) as the acceptor. In our experiments, the CT state of the EDA complexes are directly reached by femtosecond laser excitation in either CH2Cl2 or CCl4 solutions, and the subsequent temporal evolution of the fluorescence spectra were measured to explore the charge recombination (CR) dynamics. EDA complexes with various arenes, including methyl substituted and non-methyl substituted benzenes, as the donor have been studied previously in our laboratory. We used the total fluorescence intensity function P(t) to analyze CT state relaxation and CR dynamics of EDA complexes. We found two different decay behaviors in these olefin-TCNE complexes. The faster component (<1 ps) was assigned to vibrational relaxation and solvation , the slower component was attributed to CR. We concluded that the most important difference between the olefin-TCNE and arene-TCNE complexes was the electronic coupling strength. The greater electronic coupling strength in the olefin-TCNE complexes extremely accelerates CR reactions and result in a weak dependence of ET rate on the driving-force.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 X 第一章 1 1.1電子轉移簡介 1 1.2 電子轉移理論 3 1.3 EDA Complexes 文獻回顧 13 1.4 研究目的 15 第二章 實驗技術與系統 20 2.1超快飛秒雷射系統 20 2.1.1雷射產生源 21 2.1.2能量放大器 24 2.2實驗技術 28 2.2.2 時間解析光學克爾光閘螢光實驗系統與架構 30 2.2.3 超快時間解析克爾光閘螢光光譜實驗自動化數據擷取系統 43 2.3 時間解析克爾光閘螢光光譜儀的校正 46 2.3.1 光譜靈敏度的校正 46 2.3.2 時間延遲(temporal delay)校正 53 2.4 檢測時間解析克爾光閘螢光光譜儀正確性 57 2-5 瞬態吸收光譜實驗系統與技術 58 2.5.1 原理 58 2.5.2 實驗架設 59 2.5.3 瞬態吸收光譜實驗自動化數據擷取系統 61 2.5.4 瞬態吸收光譜儀的時間延遲(temporal delay)校正 62 2-6 實驗藥品及EDA 錯合物溶液的製備 65 2-7 TCNE的空白實驗 67 第三章 烯烴類-四氰基乙烯錯合物之電荷轉移動態學研究 71 3-1 Olefin-TCNE 錯合物溶於CH2Cl2、CCl4溶劑中的靜態光譜 71 3.1.1 1-hexene-TCNE 溶於CH2Cl2與CCl4中的靜態光譜 72 3.1.2 2-hexene-TCNE錯合物溶於CH2Cl2與CCl4中的靜態光譜 74 3.1.3 1-methlycyclohexene-TCNE溶於CH2Cl2與CCl4中的靜態光譜 76 3.1.4 2,3-dimethyl-2-butene-TCNE溶於CH2Cl2與CCl4中的靜態光譜 78 3.1.5 Arene與Olefin作為電子給體之電荷轉移錯合物靜態光譜結果比較 81 3-2 Olefin-TCNE於CH2Cl2、CCl4溶劑中之時間解析螢光光譜 84 3.2.1 Olefin-TCNE錯合物於CH2Cl2溶劑中的時間解析螢光光譜 85 3-3 2-hexnen-TCNE錯合物於CH2Cl2溶劑中之瞬態吸收光譜 110 3-4 綜合討論 114 3.4.1 螢光光譜Stokes shift的探討 114 3.4.2 螢光整體放強度隨時間的變化探討 115 3.4.3 EDA complex 電荷轉移速率探討 118 3.4.4 電子耦合強度探討與錯合物基態理論計算結果 126 第四章 結論 133

    1. Blankenship, R.E., D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M. Gunner, W. Junge, D.M. Kramer, and A. Melis, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. science 2011, 332(6031), 805-809.
    2. Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components. science 1998, 281(5374), 237-240.
    3. Larkum, A., Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotechnol. 2010, 21(3), 271-276.
    4. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 2006, 103(43), 15729-15735.
    5. Scholes, G.D., G.R. Fleming, A. Olaya-Castro, and R. Van Grondelle, Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3(10), 763.
    6. Kuznetsov, A.M., Charge transfer in physics, chemistry and biology: physical mechanisms of elementary processes and an introduction to the theory. 1995: Taylor & Francis.
    7. Vishniac, W. and I.A. Rose, Mechanism of chlorophyll action in photosynthesis. Nature 1958, 182(4642), 1089.
    8. Lu, Y., F. Hasegawa, Y. Kawazu, K. Totani, T. Yamashita, and W. Toshiyuki, Investigation of mechanism of photo induced polymerization excited by two-photon absorption. Sen'i Gakkaishi, 2004, 60(6), 165-172.
    9. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-sensitized solar cells. Chemical reviews, 2010, 110(11), 6595-6663.
    10. Jennings, J.R., Y. Liu, Q. Wang, S.M. Zakeeruddin, and M. Grätzel, The influence of dye structure on charge recombination in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2011, 13(14), 6637-6648.
    11. Maggio, E., N. Martsinovich, and A. Troisi, Evaluating charge recombination rate in dye-sensitized solar cells from electronic structure calculations. J. Phys. Chem. C 2012, 116(14), 7638-7649.
    12. Dimitrov, S.D., A.A. Bakulin, C.B. Nielsen, B.C. Schroeder, J. Du, H. Bronstein, I. McCulloch, R.H. Friend, and J.R. Durrant, On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends. J. Am. Chem. Soc. 2012, 134(44), 18189-18192.
    13. Zhu, H., Y. Yang, and T. Lian, Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 2012, 46(6), 1270-1279.
    14. Leonhardt, H. and A. Weller, 2. Phys. Chem. Frankfurt am Main 1961. 29, 277.
    15. Mataga, N., Y. Kaifu, and M. Koizumi, Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn. 1956, 29(4), 465-470.
    16. Marcus, R.A., On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24(5), 966-978.
    17. Rehm, D. and A. Weller, Kinetics of fluorescence quenching by electron and H‐atom transfer. Isr. J. Chem. 1970, 8(2), 259-271.
    18. Miller, J., L. Calcaterra, and G. Closs, Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 1984, 106(10), 3047-3049.
    19. Asahi, T. and N. Mataga, Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: aromatic hydrocarbon-acid anhydride,-tetracyanoethylene, and-tetracyanoquinodimethane systems in acetonitrile solutions. J. Phys. Chem. 1991, 95(5), 1956-1963.
    20. Nicolet, O., N. Banerji, S. Pages, and E. Vauthey, Effect of the excitation wavelength on the ultrafast charge recombination dynamics of donor− acceptor complexes in polar solvents. J. Phys. Chem. A 2005, 109(37), 8236-8245.
    21. Serpa, C. and L.G. Arnaut, Does molecular size matter in photoinduced electron transfer reactions? J. Phys. Chem. A 2000, 104(47), 11075-11086.
    22. Serpa, C., P.J. Gomes, L.G. Arnaut, S.J. Formosinho, J. Pina, and J.S. de Melo, Electron transfer in supercritical carbon dioxide: Ultraexothermic charge recombination at the end of the “Inverted Region”. Chem. Eur. J. 2006 ,12(19), 5014-5023.
    23. Mulliken, R.S., Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 1952, 56(7), 801-822.
    1. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press:
    New York, 1999.
    2. Fleming, G. R., Chemical Applications of Ultrafast Spectroscopy Oxford: New
    York, 1986.
    3. Boyd, R. W., Nonlinear Optics. Academic Press: San Deigo, CA, 1992.
    4. Moxtek http://www.moxtek.com/optics/visible_light.html.
    5. Kalpouzos, C.; Lotshaw, W. T.; Mcmorrow, D.; Kenneywallace, G. A., J. Phys.
    Chem. 1987, 91, 2028-2030.
    6. Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, I.; Sugimoto, N.; Fujiwara, S.,
    Rev. Sci. Instrum. 2000, 71, 3317-3322.
    7. Weber, M. J., Handbook of Optical Materials. CRC Press: Boca Raton, FL, 2003.
    8. Marcus, Y., The Properties of Solvents. John Wiley: Sons, New York, 1998.
    9. Neelakandan, M.; Pant, D.; Quitevis, E. L., Chem. Phys. Lett. 1997, 265, 283-292.
    10. Takeda, J.; Nakajima, K.; Kurita, S.; Tomimoto, S.; Saito, S.; Suemoto, T., Phys.
    Rev. B 2000, 62, 10083-10087.
    11. Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P., Appl. Phys. B Lasers Opt. 2003,
    76, 809-814.
    12. Arzhantsev, S.; Maroncelli, M., Appl. Spectrosc. 2005, 59, 206-220.
    13. Andor http://www.andor.com/pdfs/specs/du970n.pdf.
    14. 邱志忠, 清華大學化學系博士論文 2013.
    15. Gardecki, J. A.; Maroncelli, M., Appl. Spectrosc. 1998, 52, 1179-1189.
    16. Bevinton, P. R.; Robinson, D. K., Data Reduction and Error Analysis for the
    Physical Sciences. McGraw-Hill: New York, 1992.
    17. CVI http://www.cvimellesgriot.com/glossary/imagesDir/016.gif.
    18. https://www.nist.gov/.
    19. Rubtsov, I. V.; Yoshihara, K., J. Phys. Chem. A 1999, 103, 10202-10212.
    20. Wynne, K.; Galli, C.; Hochstrasser, R. M., J. Chem. Phys. 1994, 100, 4797-4810.
    21. Chiu, C.C.; Hung, C. C.; Cheng, P. Y., J. Phys. Chem.B 2016, 120, 12390-12403
    22. Ewall, R. X.; Sonnessa, A. J., J. Am. Chem. Soc. 1970, 92, 2845-2848
    Larsson, T., M. Wedborg, and D. Turner, Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter. Anal. Chim. Acta, 2007. 583(2): p. 357-363.
    2. Mulliken, R.S., Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem., 1952. 56(7): p. 801-822.
    3. Fedunov, R.G., S.V. Feskov, A.I. Ivanov, O. Nicolet, S. Pagès, and E. Vauthey, Effect of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of donor-acceptor complexes: Stochastic simulations and experiments. J. Chem. Phys., 2004. 121(8): p. 3643-3656.
    4. 邱志忠, 以超快時間解析光學克爾光閘螢光光譜研究分子間與分子內電荷轉移. 清華大學化學系學位論文, 2013: p. 1-195.
    5. 陳冠劭, 以超快時間解析光學克爾光閘螢光光譜研究非甲基取代苯-四氰基乙烯錯合物分子間電荷轉移動態學. 清華大學化學系學位論文, 2017: p. 1-123.
    6. Umapathy, S., A. Lakshmanna, and B. Mallick, Ultrafast Raman loss spectroscopy. J. Raman Spectrosc., 2009. 40(3): p. 235-237.
    7. Chiu, C.-C., C.-C. Hung, and P.-Y. Cheng, Ultrafast Charge Recombination Dynamics in Ternary Electron Donor–Acceptor Complexes:(Benzene) 2-Tetracyanoethylene Complexes. J. Phys. Chem. B, 2016. 120(48): p. 12390-12403.
    8. Jeanmaire, D.L., M.R. Suchanski, and R.P. Van Duyne, Resonance Raman spectroelectrochemistry. I. Tetracyanoethylene anion radical. J. Am. Chem. Soc., 1975. 97(7): p. 1699-1707.
    9. Gould, I.R., D. Ege, J.E. Moser, and S. Farid, Efficiencies of photoinduced electron-transfer reactions: role of the Marcus inverted region in return electron transfer within geminate radical-ion pairs. J. Am. Chem. Soc., 1990. 112(11): p. 4290-4301.
    10. Hubig, S.M., T.M. Bockman, and J.K. Kochi, Optimized electron transfer in charge-transfer ion pairs. Pronounced inner-sphere behavior of olefin donors. J. Am. Chem. Soc., 1996. 118(16): p. 3842-3851.
    11. Alvarez-Idaboy, J.R., L.A. Eriksson, T. Faengstroem, and S. Lunell, Theoretical investigation of the ethene-ethene radical cation addition reaction. J. Phys. Chem., 1993. 97(49): p. 12737-12741.
    12. Fukuzumi, S., T. Okamoto, and J. Otera, Addition of organosilanes with aromatic carbonyl compounds via photoinduced electron transfer in the presence of magnesium perchlorate. J. Am. Chem. Soc., 1994. 116(12): p. 5503-5504.
    13. Asahi, T. and N. Mataga, Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: aromatic hydrocarbon-acid anhydride,-tetracyanoethylene, and-tetracyanoquinodimethane systems in acetonitrile solutions. J. Phys. Chem., 1991. 95(5): p. 1956-1963.
    14. Chiu, C.-C., C.-C. Hung, C.-L. Chen, and P.-Y. Cheng, Ultrafast Time-Resolved Broadband Fluorescence Studies of the Benzene-Tetracyanoethylene Complex: Solvation, Vibrational Relaxation, and Charge Recombination Dynamics. J. Phys. Chem. B, 2013. 117(33): p. 9734-9756.
    15. Moran, A.M., S. Park, and N.F. Scherer, Coherent electronic and nuclear dynamics for charge transfer in 1-ethyl-4-(carbomethoxy) pyridinium iodide. J. Phys. Chem. B, 2006. 110(40): p. 19771-19783.
    16. Miller, J., L. Calcaterra, and G. Closs, Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc., 1984. 106(10): p. 3047-3049.

    QR CODE