簡易檢索 / 詳目顯示

研究生: 邱宗文
Chiou, Tzung-Wen
論文名稱: 鎳-硫錯合物之小分子活化之研究
Small Molecules Activation by Ni(III)-Thiolate Complexes
指導教授: 廖文峯
Liaw, Wen-Feng
口試委員: 蔡易州
洪政雄
王朝諺
王雲銘
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 139
中文關鍵詞: 小分子活化
外文關鍵詞: Small Molecule Activation, Nickel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Complexes [PPN][NiIII(OR)(P(C6H3-3-SiMe3-2-S)3)] (R = OPh (1), OMe (3)),
    obtaining from reactions of complexes [PPN][NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)] and 1
    with 3 equiv of [Na][OPh] and 1 equiv of [n-Bu4N][OMe] in THF-MeCN and
    THF-MeOH, respectively, are good precursors to synthesize the other NiIII complexes
    [PPN][NiIII(L)(P(C6H3-3-SiMe3-2-S)3)] (L = SPh (2), StBu (4), S(CH2)2SH (5),
    SC6H4-o-OH (6), SSSMe (7), SeSeMe (8), CCPh (9)), characterized by UV-vis,
    electron paramagnetic resonance (EPR), cyclic voltammetry (CV), and single-crystal
    X-ray diffraction.
    Complex 3 triggers coordination and activation of CO2 to yield the thermally
    stable complex [PPN][Ni(κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10), upon CO2 bubbled
    into the THF solution of complex 3 at ambient temperature. The electronic structure
    of complex 3 was identified as a separated system of NiIII and OCO radical,
    characterized by X-ray absorption and EPR spectra. Reactions of complex 10 and
    [PPN][NiIII(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11) with TMSCl producing free CO2 and
    TMS-NCO, respectively, identified the cores of M-OCO and M-NCO. In addition,
    reaction of complex 10 and 11 with excess CS2, produce complexes
    [PPN][NiIII(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13) and [PPN][Ni(OCS)(P(C6H3-3-
    SiMe3-2-S)3)] (14), respectively, an unprecedented metal-complex containing κ1-OCS
    ligand.
    Complex [PPN][NiIII(NO2)P(C6H3-3-SiMe3-2-SH)3] (15), synthesized from NO
    gas purging into THF solution of complex 3 via the mechanism of NO
    disproportionation reaction, could activate S8 to lead to the known bridging complex
    [PPN]2[(NiIII(P(C6H3-3-SiMe3-2-SH)3))2(S8)] by the pathway 2NO2- + S8 → 2NO2 + S82-.


    錯合物[PPN][NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)] 與[PPN][NiIII(OPh)(P(C6H3-3-
    SiMe3-2-S)3)] (1) 分別加入三當量的[Na][OPh] 及一當量的[n-Bu4N][OMe] 在
    THF-MeCN 及THF-MeOH 混合溶液中反應, 依序可得到錯合物1 及
    [PPN][NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)] (3)。此兩以氧為配位基的錯合物為有效
    的前驅物,可進而合成其他鎳三價錯合物[PPN][NiIII(L)(P(C6H3-3-SiMe3-2-S)3)] (L
    = SPh (2), StBu (4), S(CH2)2SH (5), SC6H4-o-OH (6), SSSMe (7), SeSeMe (8), CCPh
    (9)),並且以多種光譜技術(紫外-可見光光譜、電子順磁共振光譜及單晶X 光繞
    射分析)及循環伏安法鑑定之。
    在室溫下,將二氧化碳導入溶有錯合物3 的THF 溶液中,錯合物3 能引發
    二氧化碳配位在鎳金屬上且活化之,進而得到一熱穩定的錯合物[PPN][Ni-
    (κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10)。藉由X 光吸收光譜及電子順磁共振光譜的
    分析,錯合物10 為一鎳三價中心配位著被還原的二氧化碳自由基陰離子(carbon
    dioxide radical anion)。錯合物10 及[PPN][NiIII(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11)
    可與三甲基氯矽烷(TMSCl)反應,分別釋放出二氧化碳及異氰酸三甲基矽酯
    (TMS-NCO),由此可以區別出金屬離子配位著二氧化碳及異氰酸根兩者的不同
    之處。此外,過量的二硫化碳可將錯合物10 及11 分別轉換成錯合物
    [PPN][NiIII(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13) and [PPN][Ni(OCS)(P(C6H3-3-
    SiMe3-2-S)3)] (14)。其中,氧硫化碳(OCS)以立接模式(end-on)配位在鎳離子上的
    錯合物14 為一新發現。
    過量的一氧化氮氣體通入溶有錯合物3 的THF 溶液,經自身氧化還原反應
    可得到具有亞硝酸根配位的錯合物[PPN][NiIII(NO2)P(C6H3-3-SiMe3-2-SH)3]
    (15)。錯合物15 可與硫粉反應生成已知的帶負二價之八硫鍊雙核錯合物
    [PPN]2[(NiIII(P(C6H3-3-SiMe3-2-SH)3))2(S8)],推測其反應機構為三價鎳氧化亞硝
    酸根獲得電子進而還原硫粉。

    Table of Contents Abstract…………………………………………………..…...…..i 摘要…………………………………………………………....……ii Table of Contents………………………………..………..…..iii List of Tables………………………….………..…………..….vi List of Figures………………………………….…………..…viii Chapter I. Introduction………..……………...…….…..…..1 1-1. Insight into small molecules………….…….......…..1 1-2. Carbon dioxide (CO2)………………………..…………..…1 1-2-1. The Nature and Applications of Carbon Dioxide…...2 1-2-2. Biological Enzymes about Carbon Dioxide………….…5 1-2-3. Reactions and Activations of Carbon Dioxide……...7 1-3. Nitrous oxide (N2O)………………………….…………….15 1-4. Carbon monoxide (CO)……………………….………………19 1-5. Carbon disulfide (CS2)…………………………………….22 Chapter II. Experimental Section………………………………25 General Procedures…………………………………………………25 Preparation of [PPN][Ni(OC6H5)P(C6H3-3-SiMe3-2-S)3] (1)………...……...…......................................26 Preparation of [PPN][Ni(SC6H5)P(C6H3-3-SiMe3-2-S)3] (2)………...……...…......................................26 Preparation of [PPN][Ni(OCH3)P(C6H3-3-SiMe3-2-S)3] (3)……………......…......................................27 Reaction of [PPN][Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)] and [Na][OCH3]…......…........................................27 Reaction of Complex 1 and [(CH3)4N][OH] in THF-CH3OH……28 Preparation of [PPN][Ni(StBu)((P(C6H3-3-SiMe3-2-S)3)] (4)…………......……......................................28 Preparation of [PPN][Ni(S(CH2)2SH)((P(C6H3-3-SiMe3-2-S)3)] (5)……..……...........................................29 Preparation of [PPN][Ni(SC6H4-o-OH)((P(C6H3-3-SiMe3-2-S)3)] (6)…..…...…..........................................29 Reaction of [PPN][Ni(OPh)(P(C6H3-3-SiMe3-2-S)3)] (1) and 1,2-benzene- dithiol………………………………………………29 Preparation of [PPN][Ni(SSSMe)(P(C6H3-3-SiMe3-2-S)3)] (7)…………..…............................................30 Preparation of [PPN][Ni(SeSeMe)(P(C6H3-3-SiMe3-2-S)3)] (8)……………..…..........................................30 Preparation of [PPN][Ni(CCPh)(P(C6H3-3-SiMe3-2-S)3)] (9)…………...…...…......................................30 Preparation of [PPN][Ni(κ1-OCO)(P(C6H3-3-SiMe3-2-S)3)] (10)…………................................................31 Preparation of [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11)…………..…...….......................................31 Reaction of [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)] (10) and TMSCl……….............................................32 Reaction of [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] (11) and TMSCl…..….............................................33 Reaction of Complex 1 and CO2 in THF-MeCN………………….33 Reaction of Complex [PPN][NiIII(SEt)(P(C6H3-3-SiMe3-2-S)3)] and CO2 in THF-MeCN……………………………………….......33 Preparation of [PPN][Ni(N3)(P(C6H3-3-SiMe3-2-S)3)] (12)……………..…..…......................................34 Thermolysis of THF-MeCN solution of complex 12……………34 Preparation of [PPN][Ni(NCS)(P(C6H3-3-SiMe3-2-S)3)] (13)…………..…..…........................................34 Reaction of Complex 12 and CS2 in THF-MeCN…………………34 Reaction of Complex 10 and CS2 in THF……………………….35 Preparation of [PPN][Ni(OCS)(P(C6H3-3-SiMe3-2-S)3)] (14)……………...….........................................35 Preparation of [PPN][Ni(NO2)(P(C6H3-3-SiMe3-2-S)3)] (15)…………..….….........................................35 Reaction of Complex 15 and S8 in THF-MeCN………………….36 Preparation of [PPN][CS2] (16)…………………………………36 EPR and Effective Magnetic Moment Measurements……………37 Crystallography…………………………………………………….37 X-ray Absorption Measurements………………………………….38 Chapter III. Results and Discussion………………………….55 3-1. Synthesis, Characterization and Reactivity of Different Liganting Mode [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] Complexes……………..……….......................55 3-1-1. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = OPh, OMe and SPh)……………………………..................................55 3-1-2. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = StBu, S(CH2)2SH, and SPh)………..…………................................64 3-1-3. Synthesis and Characterization of Complexes [PPN][NiIII(L)(P(o-C6H3-3-SiMe3-2-S)3)] (L = SSSMe and SeSeMe)……………..………………...............................72 3-2. Reactivity of Nickel (III) Complexes toward Small Molecule………....…...................................83 3-2-1. Reaction of [PPN][NiIII(OCH3)(P(C6H3-3-SiMe3-2-S)3)] and CO2................................................83 3-2-2. The electronic structure of [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)]…………………………………................91 3-2-3. Reactivity of complex [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)]…...............................................100 3-2-4. Reactivity of complexes [PPN][Ni(OCO)(P(C6H3-3-SiMe3-2-S)3)] and [PPN][Ni(NCO)(P(C6H3-3-SiMe3-2-S)3)] with CS2 …………..............................................105 3-2-5. Reactivity of complex [PPN][Ni(OCH3)(P(C6H3-3-SiMe3-2-S)3)] with NO…………………………………………….....117 3-2-6. Reactivity of complex [PPN][NiIII(NO2)(P(C6H3-3-SiMe3-2-S)3)] (15)………………………………………………120 Chapter IV. Conclusion…………………………………………127 References…………………………………………………………131

    References

    1. Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; CanÞeld, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; Mackenzie, F. T.; Moore III, B.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. Science 2000, 290, 291-296.
    2. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259-272.
    3. Aresta, M.; Quaranta, E.; Tommasi, I.; Giannoccaro, P.; Ciccarese, A. Gazz. Chim. Ital. 1995, 125, 509-538.
    4. Liger-Belair, G.; Prost, E.; Parmentier, M.; Jeandet, P.; Nuzillard, J.-M. J. Agric. Food Chem. 2003, 51, 7560-7563.
    5. Lide, D. R. Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, FL, USA, 74th edn, pp. 1993–1994.
    6. Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
    7. Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975-2992.
    8. Pacheco, M. A.; Marshall, C. L. Energy & Fuels 1997, 11, 2-29.
    9. Tundo, P.; Selva, M. Acc. Chem. Res. 2002, 35, 706-716.
    10. Fukuoka, S. Producing polycarbonate, in Green and clean innovations, Chem. Ind. 6 October 1997, p. 757.
    11. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawad, I.; Konnog, S. Green Chem. 2003, 5, 497-507.
    12. Nomura, R.; Hasegawa, Y.; Ishimoto, M.; Toyosaki, T.; Matsuda, H. J. Org. Chem. 1992, 57, 7339-7342.
    13. Sclafani, A.; Palmisano, L.; Farneti, G. Chem. Commun. 1997, 529-530.
    14. Meldrum, N. M.; Roughton, F. J. Nature 1933, 80, 113.
    15. Parkin, G. Chem. Rev. 2004, 104, 699-768.
    16. Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 4690-4697.
    17. Cleland, W. W.; Andrews, T. J.; Gutteridge, S.; Hartman, F. C.; Lorimer, G. H. Chem. Rev. 1998, 98, 549-562.
    18. Mauser, H.; King, W. A.; Gready, J. E.; Andrews, T. J. J. Am. Chem. Soc. 2001, 123, 10821-10829.
    19. Dobbek, H.; Gremer, L.; Kiefersauer, R.; Huber, R.; Meyer, O. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15971-15976.
    20. Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; Huber, R.; Meyer, O. Science 2001, 293, 1281-1285.
    21. Jeoung, J.-H.; Dobbek, H. Science 2007, 318, 1461-1464.
    22. Allen, O. R.; Dalgarno, S. J.; Field, L. D.; Jensen, P.; Turnbull, A. J.; Willis, A. C. Organometallics 2008, 27, 2092-2098.
    23. Jana, A.; Ghoshal, D.; Roesky, H. W.; Objartel, I.; Schwab, G.; Stalke, D. J. Am. Chem. Soc. 2009, 131, 1288-1293.
    24. Yin, S.-F.; Maruyama, J.; Yamashita, T.; Shimada, S. Angew. Chem. Int. Ed. 2008, 47, 6590-6593.
    25. Kersting, B. Angew. Chem. Int. Ed. 2001, 40, 2988-3990.
    26. Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.
    27. Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021-10023.
    28. Silvia, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 2169-2171.
    29. Gibson, D. H. Chem. Rev. 1996, 26, 2063-2095.
    30. Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero, M. J. Chem. Soc., Chem. Commun. 1975, 636-637.
    31. Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826-7827.
    32. Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914-5915.
    33. Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Science 2004, 305, 1757-1759.
    34. Lee, C. H.; Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 13802-13803.
    35. Gao, G; Li, F.; Xu, L.; Liu, X.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 10838-10839.
    36. Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 4-5.
    37. Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242-11243.
    38. Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwnman, E. Science 2010, 327, 313-315.
    39. Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem. Int. Ed. 2009, 48, 3322-3325.
    40. Ravishankara, A. R.; Daniel, J. S.; Portmann, R.W. Science 2009, 326, 123 – 125.
    41. Duce, R. A.; LaRoche, J.; Altieri, K.; Arrigo, K. R.; Baker, A. R.; Capone, D. G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R. S.; Geider, R. J.; Jickells, T.; Kuypers, M. M.; Langlois, R.; Liss, P. S.; Liu, S. M.; Middelburg, J. J.; Moore, C. M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L. L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L. Science 2008, 320, 893-897.
    42. Tolman, W. B. Angew. Chem. Int. Ed. 2010, 49, 1018–1024.
    43. D. K. B_hme, H. Schwarz, Angew. Chem. Int. Ed. 2005, 44, 2336–2354.
    44. Chen, P.; Gorelsky, S. I.; Ghosh, S.; Solomen, E. I. Angew. Chem. Int. Ed. 2004, 43, 4132–4140.
    45. Ghosh, S.; Gorelsky, S. I.; George, S. D.; Chan, J. M.; Cabrito, I.; Dooley, D. M.; Moura, J. J. G.; Moura, I.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 3955-3965.
    46. Solomon, E. I.; Sarangi, R.; Woertink, J. S.; Augustine, A. J.; Yoon, J.; Ghosh, S. Acc. Chem. Res. 2007, 40, 581-591.
    47. Groves, J. T.; Roman, J. S. J. Am. Chem. Soc. 1995, 117, 5594-5595.
    48. Pamplin, C. B.; Ma, E. S. F.; Safari, N.; Rettig, S. J.; James, B. R. J. Am. Chem. Soc. 2001, 123, 8596-8597.
    49. Miller, T. M.; Grassian, V. H. J. Am. Chem. Soc. 1995, 117, 10969-10975.
    50. Stirling, A. J. Am. Chem. Soc. 2002, 124, 4058-4067.
    51. Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205-207.
    52. Rondinelli, F.; Russo, N.; Toscano, M. Inorg. Chem. 2007, 46, 7489-7493.
    53. Yu, H.; Jia, G.; Lin, Z. Organometallics 2009, 28, 1158-1164.
    54. Wang, Y.; Wang, Q.; Geng, Z.; Si, Y.; Zhang, J.; Li, H.; Zhang, Q. Chem. Phys. Lett. 2008, 460, 13-17.
    55. Alikhani, M. E.; Michelini, M. D. C.; Russo, N.; Silvi, B. J. Phys. Chem. A 2008, 112, 12966-12974.
    56. Jin, X.; Wang, G.; Zhou, M. J. Phys. Chem. A 2006, 110, 8017-8022.
    57. Wang, G.; Jin, X.; Chen, M. Zhou, M. Chem. Phys. Lett. 2006, 420, 130-134.
    58. Bottomley, F.; Lin, I. J. B.; Mukaida, M. J. Am. Chem. Soc. 1980, 102, 5238-5242.
    59. Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. J. Am. Chem. Soc. 1987, 109, 5538-5539.
    60. Vaughan, G. A.; Hillhouse, G. L.; Lum, R. T.; Buchwald, S. L.; Rheingold, A. L. J. Am. Chem. Soc. 1988, 110, 7215-7217.
    61. Matsunaga, P. T.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 2075-2077.
    62. Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 4999-5000.
    63. Johnson, A. R.; Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 1998, 120, 2071-2085.
    64. Cherry, J. F.; Johnson, A. R.; Baraldo, L. M.; Tsai, Y. C.; Cummins, C. C.; Kryatov, S. V.; Rybak-Akimova, E. V.; Capps, K. B.; Hoff, C. D.; Haar, C. M.; Nolan, S. P. J. Am. Chem. Soc. 2001, 123, 7271-7286.
    65. Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L. J. Am. Chem. Soc. 1989, 111, 5491-5493.
    66. Otten, E.; Neu, R. C.; Stephan, D.W. J. Am. Chem. Soc. 2009, 131, 9918-9919.
    67. Neu, R. C.; Otten, E.; Stephan, D. W. Angew. Chem. Int. Ed. 2009, 48, 9709-9712.
    68. Piro, N. A.; Lichterman, M. F.; Harman, W. H.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 2108-2111.
    69. Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, Pearson Prentice Hall, Upper Saddle River, N.J., 3rd edition, pp. 470.
    70. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc., Hoboken, New Jersey, 4th edn, pp. 87-96.
    71. Günzler, H.; Gremlich, H.-U. IR spectroscopy: An Introduction, WILEY-VCH Verlag GmbH, Weinheim, 4th edn, pp. 17.
    72. Monillas, W. H.; Yap, G. P. A.; MacAdams, L. A.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 8090-8091.
    73. Hou, H.; Rheingold, A. L.; Kubiak, C. P. Organometallics 2005, 24, 231-233.
    74. Seitz, G.; Imming, P. Chem. Rev. 1992, 92, 1227-1260.
    75. Nudelman, N. S.; Doctorovich, F.; Amorin, G. Tetrahedron Lett. 1990, 31, 2533-2536.
    76. Silvestri, G.; Gambino, S.; Filardo, G.; Guainazzi, M.; Ercoli, R. Gazz. Chim. Ital. 1972, 102, 818-821.
    77. Silvestri, G.; Gambino, S.; Filardo, G.; Spadaro, G.; Palmisano, L. Electrochim. Acta 1978, 23, 413-417.
    78. Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H. J. Am. Chem. Soc. 1985, 107, 3728-3730.
    79. Evans, W. J.; Lee, D. S.; Ziller, J. W.; Kaltsoyannis, N. J. Am. Chem. Soc. 2006, 128, 14176-14184.
    80. Summerscales, O. T.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. Science 2006, 311, 829-831.
    81. Summerscales, O. T.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. J. Am. Chem. Soc. 2006, 128, 9602-9603.
    82. Frey, A. S.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Day, I. J.; Green, J. C.; Aitken, G. J. Am. Chem. Soc. 2008, 130, 13816-13817.
    83. Arnold, P. L.; Tumer, Z. R.; Bellabarba, R. M.; Tooze, R. P. Chem. Sci. 2011, 2, 77-79.
    84. Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036-9051.
    85. Foye, W. O. J. Chem. Educ. 1969, 46, 841-845.
    86. Gandhi, T.; Jagirdar, B. R. Inorg. Chem. 2005, 44, 1118-1124.
    87. Huber, H.; Ozin, G. A.; Power, W. J. Inorg. Chem. 1977, 16, 2234-2237.
    88. Leoni, P.; Chiaradonna, G.; Pasquali, M.; Marchetti, F. Inorg. Chem. 1999, 38, 253-259.
    89. Anderson, J. S.; Iluc, V. M.; Hillhouse, G. L. Inorg. Chem. 2010, 49, 10203-10207.
    90. Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. Inorg. Chem. 1984, 23, 4125-4127.
    91. Lam, O. P.; Heinemann, F. W.; Meyer, K. Angew. Chem. Int. Ed. 2011, 50, 5965-5968.
    92. Goebbert, D. J.; Wende, T.; Jiang, L.; Meijer, G.; Sanov, A.; Asmis, K. R. J. Phys. Chem. Lett. 2010, 1, 2465-2469.
    93. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
    94. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299-9300.
    95. Lee, C.-M.; Chen, C.-H.; Ke, S.-C.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2004, 126, 8406-8412.
    96. Chen, C.-H.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 2307-2316.
    97. Lee, C.-M.; Chuang, Y.-L.; Chiang, C.-Y.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 10895-10904.
    98. Lee, C.-M.; Chiou, T.-W.; Chen, H.-H.; Chiang, C.-Y.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2007, 46, 8913-8923.
    99. Hsieh, C.-H.; Hsu, I-J.; Lee, C.-M.; Ke, S.-C.; Wang, T.-Y.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2003, 42, 3925-3933.
    100. Udpa, K. N.; Barker, S. Polyhedron 1987, 6, 627-631.
    101. Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532-536.
    102. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1996.
    103. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
    104. (a) Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Akita, M.; Moro-oka, Y. J. Am. Chem. Soc. 1998, 120, 10567–10568. (b) Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Moro-oka, Y. J. Am. Chem. Soc. 2000, 122, 254–262. (c) Mandimutsira, B. S.; Yamarik, J. L.; Brunold, T. C.; Gu, W.; Cramer, S. P.; Riordan, C. G. J. Am. Chem. Soc. 2001, 123, 9194–9195.
    105. (a) Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Roseboom, W.; Albracht, S. P. J.; Maroney, M. J. Biochemistry 2000, 39, 7468–7479. (b) Gu, Z.; Dong, J.; Allan, C. B.; Choudhury, S. B.; Franco, R.; Moura, J. J. G.; Moura, I.; LeGall, J.; Przybyla, A. E.; Roseboom, W.; Albracht, S. P. J.; Axley, M. J.; Scott, R. A.; Maroney, M. J. J. Am. Chem. Soc. 1996, 118, 11155–11165. (c) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 281–286.
    106. (a) Shaver, A.; McCall, J. M.; Bird, P. H.; Ansarl, N. Organometallics 1983, 2, 1894-1896. (b) Shaver, A.; Plouffe, P.-Y. Inorg. Chem. 1994, 33, 4327-4333.
    107. (a) Rogers, R. D.; Veracini, C. A.; Vitali, D. Inorg. Chem. 1983, 22, 1797-1804. (b) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M.-H. Inorg. Chem. 1997, 36, 4421-4425. (c) Hatemata, S.; Sugiyama, H.; Sasaki, S.; Matsumoto, K. Inorg. Chem. 2002, 41, 6006-6012.
    108. (a) Nicolet, Y.; Amara, P.; Mouesca, J.-M.; Fontecilla-Camps, J. C. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 14867–14871. (b) Bamford, V. A.; Bruno, S.; Rasmussen, T.; Appia-Ayme, C.; Cheesman, M.R.; Berks, M. C.;Hemmings, A. M. EMBO J. 2002, 5599–5610. (c) Ollagnier-de-Choudens, S.; Mulliez, E.; Fontecave, M. FEBS Lett. 2002, 532, 465–468. (d) Dey, A. Inorg. Chem. 2011, 50, 397-399. (e) Dey, A. Indian J. Chem. 2011, 50A, 498-502. (f) Mulhearn, D. C.; Bachrach, S. M. J. Am. Chem. Soc. 1996, 118, 9415-9421.
    109. Huang, D.; Holm, R. H. J. Am. Chem. Soc. 2010, 132, 4693-4701.
    110. Evans, W. J.; Seibel, C. A.; Ziller, J. W. Inorg. Chem. 1998, 37, 770-776.
    111. (a) Castro-Rodriguez, I.; Nakai, H.; Meyer, K. Angew. Chem. Int. Ed. 2006, 45, 2389-2392. (b) Chang, C.-C.; Liao, M.-C.; Chang, T.-H.; Peng, S.-M.; Lee, G.-H. Angew. Chem. Int. Ed. 2005, 44, 7418-7420. (c) Phull, H.; Alberti, D.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Angew. Chem. Int. Ed. 2006, 45, 5331-5334. (d) Shulman, R. G.; Yafet, Y.; Eisenberger, P.; Blumberg, W. E. Proc. Natl Acad. Sci. USA 1976, 73, 1384–1388.
    112. (a) Lunsford, J. H.; Jayne, J. P. J. Phys. Chem. 1965, 69, 2182-2184. (b) Sogabe, K.; Hasegawa, A.; Yamada, Y.; Miura, M. B. Chem. Soc. Jpn. 1972, 45, 3362-3366.
    113. Edlund, O.; Sohma, J.; Sogabe, K. B. Chem. Soc. Jpn. 1974, 47, 3163-3164.
    114. Kauffman, K. L.; Culp, J. T.; Allen, A. J.; Espinal, L.; Ng, W. W.; Brown, T. D.; Goodman, A.; Bernardo, M. P.; Pancoast, R. J.;Chirdon, D.; Matranga, C. Angew. Chem. Int. Ed. 2011, 50, ASAP.
    115. Koppenol, W. H.; Rush, J. D. J. Phys. Chem. 1987, 91, 4429-4430.
    116. Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K. Science 2006, 312, 1937-1940.
    117. Gerbino, D. C.; Hevia, E.; Morales, D.; Clemente, M. E. N.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D. Chem. Commun. 2003, 328-329.
    118. Ferm, R. J. Chem. Rev. 1957, 57, 621-640.
    119. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034-9040.
    120. Kamyabi, M. A.; Asgari, Z.; Monfared, H. H. J. Solid State Electronchem. 2010, 14, 1547-1553.
    121. Gutsev, G. L.; Bartlett, R. J.; Compton, R. N. J. Chem. Phys. 1998, 108, 6756-6762.
    122. Breitzer, J. G.; Chou, J.-H.; Rauchfuss, T. B. Inorg. Chem. 1998, 37, 2080-2082.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE