研究生: |
許景盛 Jing-Sheng Syu |
---|---|
論文名稱: |
碳化矽奈米針製備及其形成機制之研究 Fabrication and Formation Mechanism of SiC Nanotips |
指導教授: | 黃振昌 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 碳化矽 、奈米針 、電漿輔助化學氣相沉積儀 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用平面式微波輔助化學氣相沉積系統(Microwave plasma enhanced chemical vapor deposition),以Si(100)為基板成長a-SiC:H奈米針狀結構。並以SEM、Raman、TEM、XPS、FTIR及AES分析其微結構和化學鍵結。控制適當偏壓、氣壓以及CH4:H2流速比例,從不同製程時間探討孕核及成長,並確立a-SiC:H奈米針狀結構形成的機制有三步驟:(一) CH4:H2電漿與Si基材反應成非晶SiC核;(二) CH4:H2電漿選擇性轟擊未成核的Si基板;(三) CH4:H2電漿與針狀結構作用形成SiC鍵結的外層。
當製程時間增加,非晶形碳化矽奈米針的長度因為轟擊效應而增加。隨著CH4:H2流速比例提高,非晶形碳化矽奈米針的分布密度因為反應成核數量提高而增加。
將奈米針經過不同溫度的真空退火,得知非晶形碳化矽奈米針狀結構產生含多晶3C-SiC的針狀結構。隨著退火溫度的增加,含多晶3C-SiC的針狀結構中SiC鍵結的FTIR訊號強度越高,表示其結晶性越好。
第一章
1. W. A. De Heer, W. S. Basca, A. Chatelain, T. Gerfin, R. Humphreybaker, L. Forro, Science, 268 (1995) 845
2. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tomber, A. M. Cassell, H. Dai, Science, 283 (1999) 512
3. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, Science, 290 (2000) 1331
4. Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett., 76 (2000) 2011
5. J. Hu et al, Acc. Chem. Res., 32 (1999) 435
6. Yoon Soo Park, SiC Materials and Devices, 52 (1998)
7. Z. Pan, H. -L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. –S. Lee, N. –B. Wong, S. –T. Lee, S. Xie, Adv. Mater., 12 (2000) 1186
8. Willian D. Callister, Jr., Materials Science and Engineering An Introduction, Wiley, (1999)
9. 李文鴻,”電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究” , 國立台灣科技大學化學工程技術研究所博士論文, (1994)
10. C. -M. Zetterling, Process Technology for Silicon Carbide Device, The Institution of Electrical Engineers (2002) 2
11. Y.-M. Li, B.F. Fieselmann, A. Catalano, Amorphous and Crystalline Silicon Carbide IV, Springer-Verlag (1992) 229
12. T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Crystal Growth, 115 (1991) 634
13. C. H. Wei, Z. Y. Xie, L. Y. Li, Q. M. Yu, J. H. Edgar, J. Electron. Mater., 29 (2000)317
14. H. J. Kim, R.F. Davis, J. Appl. Phys., 60 (1986) 2897
15. J. D. Hwang, Y. K. Fan, Y. J. Song, D. N. Yaung, Jpn. J. Appl. Phys., 34 (1995) 1447
16. M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron Devices, 40 (1993) 645
17. V. E. Chlnokov, A. L. Svrkin, Mater. Sci. Eng. B, 46 (1997) 248
18. G. Rehder, M.N.P. Carren˜o, Journal of Non-Crystalline Solids, 352 (2006) 1822
19. L. G. Matus, L. Tong, M. Mehregany, D. J. Larkin, P. G. Neudeck, Inst. Phys. Conf., ed. M. G. Spencer, R. P. Devary, J. A. Edmond, M. A. Khan, P. Kaplan, M. Rahman, Institute of Physics Publishing, DC, USA, 137 (1993) 185
20. A. Chayahara, A. Masuda, T. Imura, Y. Osaka, Jpn. J. Appl. Phys., 25 (1986) L564
21. S. Kavecky, B. Janekova, J. Madejova, P. Sajgalik, J. Eur. Ceram. Soc., 20 (2000) 1939
22. E. D. Afaghani, K. Yamaguchi, I. Horaguchi, T. Nakamoto, Wear, 195 (1996) 223
23. I. –C Leu, Y. –M. Lu, M. –H. Hon, J. Cryst. Growth, 167 (1996) 607
24. u. M.K. Han, J.S. Park, Y.Mastumoto, H. Okamoto, Y.Hamakawa, Proceedings of the International Conference on Amorphous and Crystalline Silicon Carbide III - and Other Group IV - IV Material, (1992) 75
25. Z. Chen, H. Pu, M. Yu, T. Lei, Technical Digest - International Electron Devices Meeting, (1993) 221
26. D. S. Kim, Y. H. Lee, J. Electrochem. Soc., 142 (1995) 3493
27. B.R. Stoner, J.T. Glass, Apply. Phys. Lett., 60 (1992) 698
28. R. Kohl, C. Wild, N. Herres, P. Koidl, B.R. Stoner, J.T. Glass, Appl. Phys. Lett., 63 (1993) 1792
29. W. A. de Heer, A. Chatelain, D. Ugarte, Science, 270 (1995) 1179.
30. A. G. Rinzeler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science, 269 (1995) 1550
31. Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, A. R. Krauss, Appl. Phys. Lett., 70 (1997) 3308
32. P. G. Collins, A. Zettl, Phys. Rev. B, 55 (1997) 391
33. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. J. Dai, Science, 283 (1998) 512
34. X. P. Xu, G. R. Brandes, Appl. Phys. Lett., 74 (1999) 2549
35. J. M. Bonard, J. P. Salvetat, T. Stockli, L. Foro, A. Chatelain, Appl. Phys. A, 69 (1999) 245.
36. Y. Satio, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, Ultramicroscopy, 73 (1998) 1
37. I. Brodie, C. A. Spindt, Adv. Electron. Electron Phys., 83 (1992) 1
38. K. Okano, S. Koizumi, S. R. P. Silva, G. A. J. Amaratunga, Nature, 381 (1996) 140
39. W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, J. Vac. Sci. Technol. B, 14 (1996) 2011
40. W. Zhu, G. P. Kochanski, S. Jin, Science, 282 (1998) 1471.
41. J. W. Palmour, H. S. Kong, R. F. Davis, J. Appl. Phys., 64 (1988) 2168
42. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys., 76 (1994) 1363
43. S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, Handbook of Plasma Processing Technology, Nayes, New Jersey, (1990) 261-268
44. 胡瑞楷, “微波電漿化學氣相沉積法成長奈米級類鑚膜尖狀結構”, 國立清華大學博士論文, (2002)
45. S. D. Wolter, M. T. McClure, J. T. Glass, B. R. Stoner, Appl. Phys. Lett., 66 (1995) 2810
46. Iijima, S. Helical microtubulus of graphitic carbon, Nature, 354 (1991) 56
47. Y. H. Gao, Y. Bando, K. Kurashima, T. Sato, Scripta mater. 44 (2001) 1941
48. Md. Shajahan, Y. H. Mo, K. S. Nahm, J. Vac. Sci. Technol. B, 21 (2003) 1149
49. W. Yang, H. Araki, A. Hohyama, Q. Hu, H. Suzuki, Tetsuji Noda, J. Am. Ceram. Soc., 87 (2004) 733
50. P. A. Janeuay, Ceram. Ind. 4 (1992) 42
51. S. D. Wolter, B.R. Stoner, and J. T. Glass, Diamond and Related Materials, 3 (1994) 1188
第二章
1. 吳聚倉, “微波激發之大面積高密度表面波電漿源之研究”, 國立清華大學物理學系博士論文, (2000)
2. “SiC-RFCVD 沉積設備 Mannual”, 聚昌科技股份有限公司, (2006)
3. 李文鴻,”電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究” , 國立台灣科技大學化學工程技術研究所博士論文, (1994)
4. 汪建民主編, “材料分析”, 中國材料科學學會, (2005)
5. 郭正次, 朝春光, “奈米結構材料科學”, 全華科技圖書股份有限公司, (2004)
6. J. C. Vickerman, Surface Analysis: the principal techniques (John Wiley & Sons, U.K., 1997) P. 74
7. 張劭儒, “含氫非晶碳薄膜的氬氣電漿浸沒處理及其液晶配向的研究”, 國立清華大學材料科學工程研究所碩士論文, (2006)
8. J. A. Freitas, Jr. and W. J. Moore, Braz. J. Phys., 28 (1998) 12.
9. P. Colombo, T. E. Paulson, C. G. Pantano, J. Am. Ceram. Soc. 80 (1997) 2333
第三章
1. R.S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, G. Mariotto, P. Folegati, R. Ferragut, A. Dupasquier, Appl. Surf. Sci., 194 (2002) 106.
2. J. Robertson, Mater. Sci. Eng. R., 37 (2002) 246.
3. J. A. Freitas, Jr. and W. J. Moore, Braz. J. Phys., 28 (1998) 12
4. Hediger, H.J., Infrarotspektrokopie in :Methoen der chemis chen analyse, Bd. 11, 1. Aufl., Frankfurt a. M.: Akademische Verlagsgedon: Butterwonths Scientific Publ., (1960)
5. IR Spectroscopy Helmut Gunzler WILEY-VCH (1960)
6. J. Chastain, “Handbook of X-ray Photoelectron Spectroscopy”, (1992)
7. 黃振昌, “表面分析特論”, (2005)
8. 胡瑞楷, “微波電漿化學氣相沉積法成長奈米級類鑚膜尖狀結構”, 國立清華大學博士論文, (2002)
9. C. –H. Hsu, H. –C. Lo, C. –F. Chen, C. –T. Wu, J. -S. Hwang, D. Das, J. Tsai, L. –C. Chen, K. –H. Chen, Nano Lett., 4 (2004) 471
10. Y. H. Seo, K. C. Kim, H. W. Shim, K. S. Nahm, E. –K. Suh, H. J. Lee, Y. G. Hwang, D. –K. Kim, B. –T. Lee, Mater. Sci. Forum, 264-268 (1998) 199
11. V. Cimalla, K. V. Karagodima, J. Pezoldt, G. Eichhorm, Mat. Soc. and Eng., B29 (1995) 170
12. N. I. Cho, Y. M. Kim, J. S. Lim, C. Hong, Y. Sul, C. K. Kim, Thin Solid films, 409 (2002) 1