研究生: |
林修正 |
---|---|
論文名稱: |
藍杰文振動子結合共振腔之動態行為探討 A Study of Dynamic Behaviors for Horn Clamping on Langevin Vibrators |
指導教授: | 歐陽敏盛 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 振動子 、共振腔 、阻抗 、等效電路 、移動電流 |
外文關鍵詞: | vibrator, resonant amplifier, impedance, equivalent circuit, motional current |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藍杰文振動子在外加高電壓工作時,振動子所產生的溫升現象、外加的預力均會使振動子的共振頻率產生漂移,使輸出的機械功率下降。另一方面,因為振動子本身所放大的振幅並不大,所以加入共振腔設計藉以放大機械振幅。
在本論文中,首先使用阻抗分析儀(HP4194A)量測振動子在靜態(低電壓)下的壓電阻抗基本特性與等效電路值,並藉由量測動態(高電壓)的觀念獲得移動電流對頻率的響應特性,並將兩著加以比較做一分析,建立藍杰文振動子在實際應用條件下的動態等效電路。並使用光纖位移量測模組,量測加入共振腔後振動子的最大機械振幅。藉由移動電流與振幅的量測,與阻抗分析儀的結果比較,在共振頻率上,得到實際的量測結果會比使用阻抗分析儀要低,故靜態量測的等效電路並不適用於實際的應用上。本論文中提出新型動態等效電路,經由模擬的結果更接近實際的量測。另外,將振動子加入階梯形鋁材共振腔,可得到較大的機械振幅(約為原先的七倍),因此增加振動子的工作效率,而共振腔在等效電路上可視為負電阻與電感的串聯。
Actuating a Langevin vibrator at highly operating voltage, the resonant frequency was shifted due to the phenomena of thermal levitation and the loading of extra pre-pressure, resulting in the less mechanical work output. Otherwise, considering the limit magnitude of vibration for a vibrator, a horn, or call a resonant amplifier, was designed and added to the top side on a vibrator to enlarge the mechanical vibration amplitude.
The piezoelectric impedance measurement and the equivalent circuit were obtained for the fundamental characteristics of a vibrator via the HP 4194A Impedance Gain/Phase Analyzer in this thesis. These parameters are called as the piezoelectric static feature. The characteristic of motional current relative to frequency response was achieved under practical driving voltage for a vibrator, called as the piezoelectric dynamic feature. Both static and dynamic features in a piezoelectric vibrator were compared in order to find the difference and build the dynamic equivalent circuit with operating voltage. Furthermore, the vibration measurement module of optical fiber was employed to detect the maximum displacement of a vibrator with a resonant horn (amplifier). The measured result has demonstrated that the resonant frequency was moved to the lower frequency band. Therefore, the new equivalent circuit model was proposed for more matching the real response through P-Spice simulation in this study. By mean of measurement and simulation, the stepped horn could increase about seven times of the mechanical vibration amplitude; that is the more efficient in mechanical output for a vibrator. The resonant horn is a series circuit of a negative resistor and a inductor based on the simulation and analysis of the dynamic equivalent circuit.
[1] 顏安慶, “方形氣體軸承與口形氣浮導軌之特性分析,”國立 雲林科技大學機械工程學系碩士論文 (雲林, 2000).
[2] C. Choi and K.Park, “ Self-sensing magnetic levitation using a LCresonant circuit,” Sensors and Actuators A72 (1999) p. 169.
[3] L. A. Crum and A. I. Eller, J. Acoust. Am. Soc. (1970) p. 48.
[4] Wang, M. M. Saffren, and D. D. Elleman, Proc. AIAA Aerosp. Sci.
Meeting, 12th, January 30-February 1 (Washionton, D.C. 1974) p. 74.
[5] R. R. Whymark, Ultrasonics (1975) p. 13.
[6] T. G. Wang, H. Kanber, and I. Rudnick, Phys. Rev. Lett. (1977) p. 74.
[7] T. G. Wang, H. Kanber, and E. E. Olli, J. Acoust. Am. Soc. (1978)p. 63.
[8] G. Lagomarsini and T. Wang, Proc. AIAA Aerosp. Sci. 17th Meeting,January 15-17 (New Orleans, Louisana, 1979) p. 79.
[9] N. Jacobi, R. P. Tagg, J. M. Kendall, D. D. Elleman, and T. G. Wang,Proc. Aerosp. Sci. 17th Meeting, January 15-17 (New Orleans, Louisana,1979) p. 79.
[10] B.Chu, R.E. Apfel, “Acoustic radiation pressure produced by a beam of sound,” J. Acoust. Soc. Am. Vol. 72 (1982) p. 1673.
[11] T.Otsuka, K. Higuchi and K.Seya, “Consideration of sample
dimension for ultrasonic levitation,” Ultrasonics (1990) p. 1271.
[12] S. Ueha, Y. Hashimoto and Y. Koike, “Ultrasonic actuators using near field acoustic levitation,” Ultrasonics (1998) p. 661.65
[13] S. Ueha, Y. Hashimoto, and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics Vol. 38 (2000) p. 26.
[14] Hu, K. Nakamura, and S. Ueha, “An analysis of a non-contact ultrasonic motor with an ultrasonically levitated rotor,” Ultrasonics Vol. 35 (1997) p. 459.
[15] Paul I. Ro、Byoung–Gook Loh, and Javier Santiago, “Holding characteristics of planar objects suspended by near-field acoustic levitation,” Ultrasonics Vol. 38 (2000) p. 60.
[16] 歐陽敏盛, 張國財, “超音波器浮之特性分析與氣隙量測,” 中華民國自動控制研討會論文集 (桃園, 2001) p. 715。
[17] 歐陽敏盛, 張國財, “超音波振動子之等效電路與移動電流分析”中華民國自動控制研討會論文集 (桃園, 2001) p.709。
[18] K.T. Chang and M. Ouyang, “Open-Circuit Test of A PZT Vibrator and Its Applications,” Journal of Ultrasonics, Vol. 41, 2003, pp. 15-23.
[19] K.T. Chang and M. Ouyang, “Effects of A Parallel Resistor on The Transient Response of Piezoelectric Vibrator under Open-Circuit Operation,’ Japanese Journal of Applied Physics, accepted on November 18, 2002.
[20] 吳朗, 電子陶瓷-壓電, 全欣科技出版社 (台北, 1994)。
[21] 許溢适,超音波電動機基礎,文笙書局,台北,1992。
[22] 賴耿陽,超音波工程理論實務,復漢出版社,台北,2000。。
[23] L. Petit, N. Rizet, R. Briot, P. Gonnard, “Frequency behaviour and speed control of piezomotors,” Sens. Actuators 80 (2000) 45–52.
[24] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[25] M. Umeda, K. Nakamura, and S. Ueha, ”The Measurement of High-power Characteristics for a Piezoelectric Transducer Based on the Electrical Transient Response”, Jpn. J. Appl. Phys. Vol.37(1998) pp. 5322-5325
[26] Y. Koike, T. Tamura and S. Ueha, ”Electrical Equivalent Circuit of Loaded Thick Langevin Flexural Transducer,” Jan. J. Appl. Phys. Vol. 36 (1997) pp. 3121-3125.
[27] S. Hirose, “New Method for Measuring Mechanical Vibration Loss and Dielectric Loss of Piezoelectric Transducer under High-power Excitation,” Jpn. J. Appl. Phys. Vol. 33 (1994) pp. 2945-2948.
[28] Takura Ikeda,” Fundamentals of piezoelectricity,” OXFORD UNIVERSITY PERSS 1990.
[29] N. Mohan, T. Undeland and W. Robbins, “Power Electronics – Converters, Application, and Desgn”, second edition, 1995, Wiley.
[30] 鄭大森,Pspice 視窗版 Design Center 在電力電子上的應用,全華科技,台北,1999。
[31] 盧佑銘,PSpice A/D V9.0電子電路分析,台科大圖書,台北,2001。
[32] 鄭振東,超音波工程,全華科技,台北,1999。
[33] 洪維恩,Mathematica 3.0版入門指引,松崗,台北,2000。
[34] 荀飛,Mathematica 4.x 實例學習,博碩,台北,2001。