研究生: |
林葆喜 Pau Yee Lim |
---|---|
論文名稱: |
貴重電極之製備及其應用於電化學製備之金屬奈米粒子之研究 Noble Electrode Fabrication and Its Application to the Electrochemical Deposition of Metal Nanoparticles |
指導教授: |
施漢章
Han-Chan Shih |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 197 |
中文關鍵詞: | 化學氣相沉積 、薄膜電極 、滲硼鑽石薄膜 、背景電流 、電位範圍 、電化學動能 、氧化銥 、鈦基材 、熱處理 、酸蝕 、氫化鈦 、表面粗度 、銀奈米粒子 、電化學合成 、分散性 |
外文關鍵詞: | chemical vapor deposition, thin film electrode, boron doped diamond film, background current, potential window, electrochemical kinetics, iridium oxide, titanium substrate, heat treatmrent, acid etch, titanium hydrides, surface roughness, silver nanoparticles, electrochemical synthesis, dispersion |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米技術在許多不同產業領域埋藏巨大的商機。其中,金屬奈米粒子在實用上頗受各產業的殷切期待,包括資訊電子產業、構造材料、觸媒塗料、抗菌等應用;同時亦積極尋求可量產製備奈米金屬粉體之技術。本研究中探討以電化學法製備高度分散在溶液中之奈米金屬粉體之前瞻技術,以及應用在金屬離子還原反應形成粒子之貴重電化學電極材料技術。
研究証實於室溫條件下在電化學電極表面即可快速並有效還原金屬金及銀離子,並同時分散奈米金及銀金屬粒子於溶液中。奈米金屬粉體以電化學法製備的液相環境分別包括乙二醇及水溶液;添加其中之分散劑聚乙烯呲咯酮(Poly(N-vinylpyrrolidone))亦經檢驗其電化學穩定性。電化學法所製備奈米金屬粉體之特性如粒徑分布、粒子形狀及大小、微結構及成長方向等則利用物理分析技術如,HRTEM及NBED進行觀察。為未來可量產及提高效率,實驗並進一步針對製程條件探討其對於奈米銀粒子形成之影響。透過利用紫外光-可見光頻譜,分析溶液中之奈米銀粒子形成量因著條件改變之變化;包括電化學條件及電解液條件如分散劑之分子量、KNO3濃度,以及電化學電位之影響。另外,在電極材料方面,實驗比較使用鉑 、鈦 、IrO2-Ti2O5 及BDD(含硼鑽石)做為陰極材料對於奈米銀粉體製備效率的差異。
本研究中並分別探討鈦覆BDD膜及IrO2-Ta2O5層之電化學電極特性。實驗分析鈦基材表面條件對於所鍍BDD鑽石膜之電化學特性的影響。經過處理之鈦材基板表面所沉積之BDD膜以拉曼頻譜、SEM、壓痕測試等分析其鑽石膜品質,並進一步分析其電化學特性及耐久性。顯然,利用粗化表面可降低CVD鑽石膜高温製程所產生殘留內應力,有改善鑽石膜和鈦基材之間的附著性。另外,鈦基材採用化學酸蝕,不但得使表面獲得粗化,亦因表面附有TiH可加速CVD鑽石膜成核而獲得致密鑽石膜,進而使鈦覆BDD電極的背景電流極低,且電化學耐久性增加。
鈦基材表面粗化以及氧化層表面保護膜對於表面覆IrO2-Ta2O5層之電化學觸媒電極之耐久性亦有提升之效果。鈦基板處理過程包括熱處理、噴砂、酸蝕可獲得粗度極高的表面,經過熱氧化產生保護膜後再利用熱分解法覆上IrO2-Ta2O5電化學觸媒層。在嚴苛的硫酸液環境下長期以外加電流加速進行陽極氧化反應之加速壽命試驗並顯示,鈦基材表粗度及保護膜氧化層厚度對IrO2-Ta2O5/鈦 之電化學電極壽命有直接之關係,並且有加成之作用。
Grade 1 鈍鈦與鈦合金例如Ti–6Al–4V和Ti–3Al–2.5V經由相同表面處理(過程:□及□相熱處理、噴砂、鹽酸蝕刻)後,相比較其微結構差異。實驗並探討微結構變化對於其曝露在酸液中的金屬析出行為及蝕刻後表面粗度。熱處理使Ti–6Al–4V和Ti–3Al–2.5V之晶粒合金元素重新分佈,因而易發生晶粒蝕刻而增加粗糙度,同時因鈍化之晶界逐漸露出表面而獲得較高化學穩定性。
This thesis reports a novel method of using electrochemical process in the synthesis of monodispersed metal nanoparticles. The fabrication of the noble electrodes devised for the electrochemical system was also studied. The synthesis of monodispersed Ag and Au nanosphere particles in ethylene glycol and aqueous solution at room temperature by electrochemical method was demonstrated. Poly(N-vinylpyrrolidone) (PVP) was chosen as the stabilizer and tested for electrochemically stablility. Further characterization by high-resolution transmission electron microscopy (HRTEM) and nano-beam electron diffraction (NBED) pattern was carried out to investigate the particles size and growth direction of the nanosphere particles. For the large scale production of Ag nanoparticles for industrial uses, investigation has been focused on the effect of the electrochemical parameters on the formation of monodisperse Ag nanoparticles. The time evolution of absorption spectra by UV-Visible spectroscopy was employed to illustrate that silver nanoparticles in the electrolyte increase upon electrochemical process under the effect of different electrolyte compositions, applied potential and electrode materials. Suitability of the BDD (boron-doped diamond) electrode and IrO2 coated Ti electrode for the electrochemical synthesis of the Ag nanoparticles was demonstrated.
The electrode properties of BDD thin films grown by a hot-filament chemical vapor deposition technique on the surface modified Ti substrates were evaluated. The BDD films deposited thereon were characterized with various methods, including Raman spectroscopy, scanning electron microscopy (SEM), film adhesion using Vicker’s indentation method, and e.t.c.. Influence of the BDD film quality on the electrochemical performance and electrode stability has also been evaluated. The substrate roughened surface obviously reduces the film inner stress thus improved the film adhesion. In addition, the preetching of the Ti substrate produces the titanium hydride layer that can affect the BDD film growth significantly. The electrodes reveal minimal background current and better stability.
The Ti substrate surface, associated with an intense micro-roughness and a layer of protective Ti oxide, exhibits a significant contribution to the durability of the IrO2-Ta2O5 coated Ti electrode. The IrO2-Ta2O5 coated Ti-supported anodes were examined using c.p. grade 1 Ti plates as the starting substrate material which were given various treatment processes including annealing, chemical etching and thermal oxidation prior to the coating of IrO2-Ta2O5 active layer by the conventional thermo-decomposition method. The attempts analyzed the result of a modified approach to form a significant intense roughness to provide additional bonding and anchoring for the catalyst oxide coating. The roughened Ti substrate was further given protection by a thin thermal oxide layer on the surface. The service life of the IrO2-Ta2O5 coated Ti base electrode was assessed in aqueous solution of H2SO4 in order to clarify the effect of improved bonding durability between IrO2-Ta2O5 coating layer and Ti base metal. The surface morphology and phase structure properties of the Ti substrates and as well as the IrO2-Ta2O5 coating layer were investigated by scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction technique (XRD) and Auger electron spectroscopy (AES) analyses.
Microstructure effect on chemical etching behavior of the annealed Ti–6Al–4Vand Ti–3Al–2.5V titanium (Ti) alloys was compared with that of unalloyed c.p titanium. The microstructural evolution of structure phases after annealing the titanium and its alloys at temperature near and above β transus and followed by furnace cooling to room temperature was studied using optical microscope, SEM and XRD. The microstructure study illustrates that the heat treatment enhanced partitioning effect allows extensive formation of hemispherical and near spherical pits roughened surface to be readily acquired by chemically etching the annealed α+β titanium alloys. The increasing networks of grain boundary β phase near surface act as a barrier over the underneath α grain. The kinetics of the chemical etching reaction process shows that the annealed α+β titanium alloys exhibit relatively lower weight loss and thickness reduction rate, thus illustrate less chemical activity than the annealed unalloyed c.p. titanium.
1. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley Interscience, London, 1992.
2. S. B. Fuller, E.J. Wilhelm and J.M. Jacobson, ”Ink-jet printed nanoparticle microelectromechanical systems”, J. Microelectromech. Syst. 11 (2002) 54.
3. T. Nagai, K. Hoshino, K. Matsumoto and Shimoyama, ”Direct ink-jet printing of electric materials with active alignment control”, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9 (2005) 162.
4. H. Lee, K. Chou and K. Huang, “Inkjet printing of nanosized silver colloids”, Anotechnology 16 (2005) 2436.
5. H. J. Lee, S. Y. Yeo and S. H. Jeong, ”Antibacterial effect of nanosized silver colloidal solution on textile fabrics”, J. Mater. Sci. 38 (2003) 2199.
6. F. Bonet, C. Guery, D. Guyomard, R. Herrera Urbina, K. Tekaia-Elhsissen and J.M. Tarascon, “Electrochemical reduction of noble metal compounds in ethylene glycol”, J. Inorg. Mater. 1 (1999) 47.
7. P. Y, Silvert and K. Tekaia-Elhsissen, “Synthesis of monodisperse submicronic gold particles by the polyol process”, Solid State Ionics 82 (1995) 53.
8. Z. Zhang, B. Zhao and L. Hu, “PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes”, J. Solid State Chem. 121 (1996)105.
9. Hyeon Suk Shin, Hyun Jung Yang, Seung Bin Kim and Mu Sang Lee, “Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ -irradiated silver nitrate solution”, J Colloid Interf. Sci. 274 (2004) 89.
10. C. Sanchez and E. Leiva, “Underpotential versus overpotential deposition: a first-principles calculation”,J. Electroanal. Chem. 458 (1998) 183.
11. K. Serrano, P.A. Michaud, Ch. Comninellis and A. Savall, “Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes”,Electrochim. Acta. 48 (2002) 431.
12. N. Wangfuengkanagul, O. Chailapakul and J. Pharmaceut, “Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system”, Biomed. 28 (2002) 841.
13. M. Panizza, P.A. Michaud, G. Cerisola and Ch. Comninellis, “Electrochemical treatment o wastewaters containing organics pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area”, Electrochem. Commun., 3 (2001) 336.
14. C. Prado, S. J. Wilkins, F. Marken and R. G. Compton, “Simultaneous electrochemical detection and determination of lead and copper at boron-doped diamond film electrodes”, Electroanal. 14 (2002) 262.
15. Y. Show, M. A. Witek, P. Sonthalia and G. M. Swain, “Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes“, Chem. Mater. 15 (2003) 879.
16. S. Haymond, G. T. Babcock and G. M. Swain, “Electron transfer kinetics of ferrocene at microcrystalline boron-doped diamond electrodes: effect of solvent and electrolyte”, Electroanal. 15 (2003) 249.
17. Ralph N. Adams, pages 124-139 in Electrochemistry at Solid Electrodes, Dekker (1969).
18. R. S. Nicholson, “Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics”, Anal. Chem. 37 (1965) 1351.
19. Yu. V. Pleskov, Yu. E. Evstefeeva, M. D. Krotova and A. V. Laptev, “Synthetic semiconductor diamond electrodes: a study of electrochemical behavior of boron-doped single crystals grown at a high temperature and high pressure”, Electrochim. Acta. 44 (1999) 3361.
20. R. Ramesham and M. F. Rose, “Electrochemical characterization of doped and undoped CVD diamond deposited by microwave plasma”, Diamond Relat. Mater. 6 (1997) 17.
21. Yu. V. Pleskov, “Electrochemistry of diamond: a review”, Russ. J. Electrochem+, 38 (12) (2002) 1275.
22. J. W. Strojek, M. C. Granger, G. M.Swain, T. Dallas and M. W. Holtz, “Enhanced signal-to-background ratios in voltammetric measurements made at diamond thin-film electrochemical interfaces”, Anal. Chem. 68 (1996) 2031.
23. M. Yoshimura, K. Honda, T. Kondo, R. Uchikado, Y. Einaga, T. N. Rao, D. A. Tryk and A. Fujishima, “Factors controlling the electrochemical potential window for diamond electrodes in non-aqueous electrolytes”, Diamond Relet. Mater. 11 (2002) 67.
24. R. Kotz, H. Neff and S. Stucki, “Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution”, J. Electrochem. Soc. 131 (1984) 72.
25. C. Mousty, G. Foti and Ch. Comninellis, “Electrochemical behaviour of DSA type electrodes prepared by induction heating”, V. Reid, Electrochim. Acta 45 (1999) 451.
26. M.M. Hefny and S. A. Wanees, “Electro-oxidation at a coated iridium electrode”, Electrochem. Acta 9 (1996) 1419.
27. Beer H. "Improvements in/or relating to electrodes for electrolysis" British Patent(1969) 1,147,442.
28. S. Trasatti, “Electrocatalysis: Understanding the success of DSA”, Electrochim. Acta 45 (2000) 2377.
29. L. D. Burke and M. Mccarthy, “Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base”, Electrochim. Acta 29 (1984) 211.
30. Ch. Comninellis and G. P. Vercesi, “Characterization of DSA-type oxygen evolving electrodes: choice of a coating”, J. Appl. Electrochem. 21 (1991) 335.
31. A. J. Terezo and E. C. Pereira,” Fractional factorial design applied to investigate properties of Ti:IrO2–Nb2O5 electrodes”, Electrochim. Acta 45 (2000) 4351.
32. S. Kulandaisamy, J. P. Rethinaraj, S. C. Chockalingam, S. Visvanathan, K. V.Venkateswaran, P. Ramachandran and V. Nandakumar, “Performance of catalytically activated anodes in the electrowinning of metals”, J. Appl. Electrochem. 27 (1997) 579.
33. R. Kotz and S. Stucki, “Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media”, Electrochim. Acta 31 (1986) 1311.
34. J. Krysa, L. Kule, R. Mraz and I. Rousar, “Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes”, J. Appl. Electrochem. 26 (1996) 999.
35. R. Mraz and J. Krysa, “Long service life IrO2-Ta2O5 electrodes for electroflotation”, J. Appl. Electrochem. 24 (1994) 1262.
36. J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden, “Charactérisation des électrodes de type DSA pour le dégagement de O2—i. l'électrode Ti/IrO2-Ta2O5”, Electrochim. Acta 33 (1988) 573.
37. J. L. Elechiguerra, J. L. Burt, J. R Morones, A. Camacho-Bragado, X. Gao, H. H Lara and M. J. Yacaman, “Interaction of silver nanoparticles with HIV-1”, J. Nanobiotechnology 3 (2005) 3.
38. N. R. Jana, L. Gearheart and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio”, Chem. Commun. (2001) 617.
39. T. Oku, T. Kusunose, K. Niihara and K. Suganuma, “Chemical synthesis of silver nanoparticles encapsulated in boron nitride nanocages”, J. Mater. Chem. 10, (2000) 255.
40. L. Armelao, R. Bertoncello, E. Cattaruzza, S. Gialanella, S. Gross, G. Mattei, P. Mazzoldie and E. Tondello, “Chemical and physical routes for composite materials synthesis: Ag and Ag2S nanoparticles in silica glass by sol–gel and ion implantation techniques”, J. Mater. Chem. 12 (2002) 2401.
41. A. S. Grijalva, R. H. Urbina, J. F. R. Silva, M. A. Borja, F. F. C. Barraza and A. P. Amwrillas, “Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution”, Physica E 25 (2005) 438.
42. K. Patel, S. Kapoor, D. P. Dave and T. Mukherjee, “Synthesis of nanosized silver colloids by microwave dielectric heating”, J. Chem. Sci. 117 (2005) 53.
43. B. He, J. J. Tan, K. Y. Liew and H. Liu, “Synthesis of size controlled Ag nanoparticles”, J. Mol. Catal. A-Chem 221 (2004) 121.
44. A. Vaskevich, M. Rorenblum and E. Gileadi, “Underpotential-overpotential transition of silver overlayer on platinum part 1. formation of Pt + Ag surface alloy”, J. Electroanal. Chem. 383 (1995) 167.
45. F. Jing, H. Tong and C. Wang, “Cyclic voltammetry study of silver seed layers on p-silicon (100) substrates”, J. Solid State Electrochem. 8 (2004) 877.
46. Z. Zhang, B. Zhao and L. Hu, “PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes”, J. Solid State Chem. 121 (1996) 105.
47. F. Bonet, C. Guery, D. Guyomard, R. H. Urbina, K. Tekaia-Elhssissen and J. M. Tarascon, “Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes”, Solid State Ionic 126 (1999) 337.
48. Y. Show, M. A. Witek, P. Sonthalia and G. M. Swain, “Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes” , Chem. Mater. 15 (2003) 879.
49. L. Codognoto, S. A. S. Machado and L. A. Avaca, “Square wave voltammetry on boron-doped diamond electrodes for analytical determinations”, Diamond Relat. Mater. 11 (2002) 1670.
50. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultzc and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles ”, J. Chem. Phys. 116, ( 2002) 6755.
51. J. Xu, M. C. Granger, Q. Chen, J. W. Strojek, T. E. Lister and G.M. Swain, “Boron-doped diamond thin film elctrode”, Anal. Chem. 69 (1997) 591a.
52. M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, Sh. Haymond, Y. Show and G. M. Swain, “Conductive diamond thin-films in electrochemistry”, Diamond Relat. Mater. 12 (2003) 1940.
53. M. Yanagisawa, L. Jiang, D. A. Tryk, K. Hashimoto and A. Fujishima, “Surface morphology and electrochemical properties of highly boron doped homoepitaxial diamond films”, Diamond Relat. Mater. 8 (1999) 2059.
54. A. D. Modestov, Yu. E. Evstefeeva, Yu. V. Pleskov, V. M. Mazin, V. P. Varnin and I. G. Teremetskaya, “Synthesis of diamond electrodes: kinetics of some redox reactions”, J. Electroanal. Chem. 431 (1997) 211.
55. S. Ferro and A. De Battisti, “Electron transfer reactions at conductive diamond electrodes”, Electrochim. Acta. 47 (2002) 1641.
56. Yu. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova and A. V. Laptev, “Synthetic semiconductor diamond electrodes: a study of electrochemical behavior of boron-doped single crystals grown at a high temperature and high pressure”, Electrochim. Acta. 44 (1999) 3361.
57. V. Fisher, D. Gandini, S. Laufer, E. Blank and Ch. Comninellis, “Preparation and characterization of ti/diamond electrodes”, Electrochim. Acta 44 (1999) 521.
58. F. Beck, W. Kaiser and H. Krohn, “Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry”, Electrochim. Acta 45 (2000) 4691.
59. I. Gerger, R. Haubner, H. Kronberger and G.Fafilek, “Investigation of diamond coatings on titanium substrates for electrochemical applications”, Diamond Relat. Mater. 13 (2004) 1062.
60. M. Fryda, L. Schaefer and I. Troester, “Doped diamond - a new material for industrial electrochemistry”, Recent Res. Devel. Electrochem. 4 (2001) 85.
61. N. G. Ferreira, E. Abramof, E. J. Corat and V. J. Trava-Aroldi, “Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction ”, Carbon 41 (2003) 1301.
62. J. W. Ager and M. D. Drory, “Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapour deposition”, Phys. Rev. B48: (1993) 2601.
63. K. Ushizawa, M. Nishitani-Gamo, C. Xiao, K. Watanabe, Y. Sato and T. Ando, “Surface-enhanced Raman study of C-H and C-D stretching vibrations on diamond surface”, In: Proc. 6th Int. Symp. on Diamond Materials, Pv 99-32, P191 247, The Electrochemical Society, Pennington, Nj (2000).
64. K. W. Chae, Y. J. Baik and D. Y. Kim, “Dependence of the diamond coating adhesion on the microstructure of SiC-based substrates”, Diamond Relat. Mater. 8 (1999) 1018.
65. Y. Fu, B. Yan and Nee Lam Loh, “Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition”, J. Mater. Sci. 34 (1999) 2269.
66. F. Beck, H. Krohn, W. Kaiser, M. Fryda, C.P. Clages and L. Schaefer, ”Boron doped diamond / titanium composite electrodes for electrochemical gas generation from aqueous electrolytes”, Electrochim. Acta 44 (1998) 525.
67. Yu. V. Pleskov, Yu. E. Evstefeeva, M. D. Krotova, P. Y. Lim, H. C. Shih, V. P. Varnin, I. G. Teremetskaya, I. I. Vlasov and V. G. Ralchenko, “Synthetic diamond electrodes: the effect of surface microroughness on the electrochemical properties of CVD diamond thin films on titanium”, J. Appl. Electrochem. 35 (2005) 857.
68. E. Herrero, L. J. Buller, J. Li, A. C. Finnefrock, A. B. Salomon, C. Alonso, J.D. Brock and H.D. Abruna, “Electrodeposition dynamics: electrochemical and X-ray scattering studies”, Electrochim. Acta 44 (1998 ) 983.
69. A. Manivannan, M. S. Seehra, D. A. Tryk and A. Fujishima, “Electrochemical detection of ionic mercury at boron-doped diamond electrodes”, Anal. Lett., 35 (2002) 355.
70. P. Delahay, New Instrumental Methods In Electrochemistry Chap. 6 , Interscience., New York, 1954.
71. M. Tanaka, K. Aoki, K. Tokuda and H. Matsuda, “Voltammetry at geometrically uneven electrodes. Part I. Chronoamperometry at model electrodes with rectangular hollow or protrusive surfaces”, J. Electroanal. Chem. 246 (1988) 1.
72. J. M. Hu, H. M. Meng, J. Q. Zhang and C. N. Cao, “Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid”, Corros. Sci. 44 (2002) 1655.
73. Y. Matsumoto, T. Tazawa, N. Muroi and E. Sato, “New types of anodes for the oxygen evolution reaction in acidic solution”, J. Electrochem. Soc. 133 (11)(1986 ) 2257.
74. E. Mahe and D. Devilliers, “Surface modification of titanium substrates for the preparation of noble metal coated anodes“, Electrochim. Acta 46 (2000) 629.
75. K. Fukuda, C. Iwakura and H. Tamura, ”Effect of heat treatment of Ti substrate on service life of Ti-supported IrO2 electrode in mixed aqueous solutions of H2SO4, (NH)2SO4 and NH4F”, Electrochim. Acta 25(1980) 1523.
76. Y. Kamegaya, K. Sasaki, M. Oguri, T. Asaki, H. Kobayashi and T. Mitamura, “Improved durability of iridium oxide coated titanium anode with interlayers for oxygen evolution at high current densities”, Electrochim. Acta 40 (7 )(1995) 889.
77. E. S. Gadelmawls, M. M.Koura, T. M. A. Maksoud, I. M. Elewa and H. H. Soliman, “Roughness parameters”, J Mater. Process Tech. 123 (2002) 133.
78. F. J. Gil, J. A. Picas, J. M. Manero, A. Forn and J. A. Planell, “Effect of the addition of palladium on grain growth kinetics of pure titanium”, J. Alloys. Comp. 260 (1997) 147.
79. Y. Sul, C. B. Johansson , S. Petronis, A. Krozer, Y. Jeong , A. Wennerberg and T. Albrektsson, “Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition”, Biomater. 23 (2002) 491.
80. Yu. E. Roginskaya and O. V. Morozova, “The role of hydrated oxides in formation and structure of DSA-type oxide electrocatalysts”, Electrochim. Acta 40 (1995) 817.
81. A. De Oliveira-Sousa, M. A. S. Da Silva, S. A. S. Machado, L. A. Avaca and P. De Lima-Neto, “Influence of the preparation method on the morphological and electrochemical properties of Ti:IrO2-coated electrodes”, Electrochim. Acta 45 (2000) 4467.
82. R. R. Boyer, In Kathleen Mills (Ed.) Metal Handbook Ninth Edition, Vol. 9 Metallography and Microstructures, American Society For Metals, 1985, P.458.
83. D. J. Blackwood and S. K. M. Chooi, “Stability of protective oxide films formed on porous titanium”. Corros. Sci. 44 (2002) 395.
84. J. Lincks, B. D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean and Z. Schwartz, “Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition ”, Biomaterials,19 (1998) 2219.
85. G. Heinrich, T. Grogler, S. M. Rosiwal and R. F. Singer, ”CVD diamond coated titanium alloys for biomedical and aerospace applications”, Surf. Coat. Technol., 94-95 (1997) 514.
86. J. Gueneau De Mussy, J.V. Macpherson and J. Delplancke, “Characterisation and behaviour of Ti/TiO2/noble metal anodes”, Electrochim. Acta. 48 (2003) 1131.
87. J. Gonzaalez-Garcoaa, J. Iniesta, E. Expoasito, V. Garcoaa-Garcoaa, V. Montiel and A. Aldaz, ‘’Early stages of lead dioxide electrodeposition on rough titanium“, Thin Solid Films 352(1999) 49.
88. P. Molitor, V. Barron and T. Young, “Surface treatment of titanium for adhesive bonding to polymer composites: a review”, Int. J. Adhes. Adhes. 21 (2001) 129.
89. H. J. Ronold, S. P. Lyngstadaas and J. E. Ellingsen, “Analyzing the optimal value for titanium implant roughness in bone attachment using a tensile test ”, Biomaterials 24 (2003) 4559.
90. L. Jonasova, F. A. Muller, A. Helebrant, J. Strnad and P. Greil, “Biomimetic apatite formation on chemically treated titanium”, Biomaterials 25 (2004) 1187.
91. B. D. Boyan, S. Lossdorfer, L. Wang, G. Zhao, C. H. Lohmann, D. L. Cochran and Z. Schwart, “Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies”, Eur. Cells Mater. 5 (2) (2003)11.
92. M. H. Prado Da Silva, G. A. Soare, C.N. Elias, J. H. C. Lima, H. Schechtman, I. R. Gibson and S. M. Best, “Surface analysis of titanium dental implants with different topographies”, Mat. Res. 3(3) (2000) 61.
93. K. Suzuki, K. Aoki and K. Ohya, “Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits”, Bone 21(6) (1997) 507.
94. D. Arola, M. L. Mccain, S. Kunaporn and M. Ramulu, “Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress”, Wear 249 (2002) 943.
95. C. Madore and D. Landolt, “Electrochemical micromachining of controlled topographies on titanium for biological applications”, J. Micromech. Microeng, 7 (1997) 270.
96. D. Lee, Y.G. Kim, D. Nam and S. Hur, S. Lee, “Dynamic deformation behavior and ballistic performance of Ti–6Al–4V alloy containing fine □2 (Ti3Al) precipitates ”, Mater. Sci. Eng. A 391 (2005) 221.
97. P. A. Dearnley, K. L. Dahma and H. Cimenoglu, “The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V ”, Wear 256 (2004) 469.
98. H. Dong and X. Y. Li , “Oxygen boost diffusion for the deep-case hardening of titanium alloys ”, Mater. Sci. Eng. A280 (2000) 303.
99. R. W. Schutz and L. C. Covington, “Effect of oxide films on the corrosion resistance of titanium“, Corrosion 37 (10) (1981) 585.
100. M. T. Pham, I. Zyganow, W. Matz, H. Reuther, S. Oswald, E. Richter and E. Wieser, “Corrosion behavior and microstructure of titanium implanted with □ and □ stabilizing elements”, Thin Solid Films 310 (1997) 251.
101. M. A. Khan, R. L. Williams and D. F. Williams, “Conjoint corrosion and wear in titanium alloys”, Biomaterials 20 (1999) 765.
102. L. Thair, U. K. Mudali, R. Asokamani and Baldev Raj, “Influence of microstructural changes on corrosion behaviour of thermally aged Ti-6Al-7Nb alloy”, Mater. Corros. 55 (5) (2004) 358.
103. M. Geetha, U. K. Mudali and A. K. Gogia, “Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy“, Corros. Sci. 46 (2004) 877.
104. ASTM Standard E 112-96: Standard test methods for determining average grain size.
105. S. Malinova, W. Shaa, Z. Guoa, C.C. Tangb and A. E. Long, “Synchrotron X-ray diffraction study of the phase transformations in titanium alloys”, Mater. Charact. 48 (2002) 279.
106. S. Mishra and T. Debroy, “Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti–6Al–4V welds”, Acta Mater. 52 (2004) 1183.
107. E.O. Hall, “The deformation and ageing of mild steel: III discussion of results”, Proc. Phys. Soc. London B64, (1951) 747.
108. N.J. Petch, ”The cleavage strength of polycrystals”, J. Iron Steel Inst. 174, (1953) 25.
109. S. Y. Yu and J. R. Scully, “Corrosion and passivity of Ti-13% Nb-13% Zr in comparison to other biomedical implant alloys”, Corrosion 53 (12) (1997) 965.
110. J. P. Fraynet, A. Caprani, T. Jaszay and F. Priem, ”Influence of aluminium and vanadium on the anodic dissolution of Ti-Al and Ti-V binary alloys in concentrated hydrochloric acid”, Corrosion 41 (11) (1985) 656.
111. R. J. Madix, J. Biener, M. Baumer, “The growth of vanadium oxide on alumina and titania single crystal surfaces”, Faraday Discuss.,. 114 (1999) 67.
112. A. C. Fraker, A. W. Ruff, J. A. S. Green and C.J. Bechtoldt, “Polarization measurements on titanium tube and sheet having preferred orientation textures”, Corrosion 30 (6)(1974) 203.
113. J. A. S. Green and R. M. Latanision, “Factors controlling the corrosion behavior of titanium and titanium-nickel alloys in saline solutions”, Corrosion 29 (10) (1973) 386.
114. Z. S. Zhu, J. L. Gu, R. Y. Liu, N. P. Chen and M. G. Yan, ” Variant selection and its effect on phase transformation textures in cold rolled titanium sheet ”, Mater. Sci. Eng. A280 (2000) 199.