簡易檢索 / 詳目顯示

研究生: 張絹鈺
Chang, Juan-Yu
論文名稱: 粒線體NDUFS8次單元功能分析及其粒線體標的訊號之研究
The functional study of mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 8 and characterization of its mitochondrial targeting sequence
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 69
中文關鍵詞: 粒線體NDUFS8粒線體標的訊號粒線體酵素複合體複合I鐵硫中心
外文關鍵詞: mitochondria, NDUFS8, mitochondrial targeting signal, mitochondrial complex I, iron-sulfur cluster
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 哺乳類細胞內的氧化磷酸化系統是由五個酵素蛋白複合體所構成。五個酵素蛋白複合體中,粒線體酵素複合體I是最大且最複雜的,它含有許多未定義的次單元,其完整的結構也尚未解開。哺乳類的粒線體酵素複合體I包含45個次單元,其中7個次單元由粒線體基因體組所表達。剩餘的次單元則均由細胞核基因體組所表現,並被運送入粒線體執行他們的功能。 NADH dehydrogenase (ubiquinone) Fe-S protein 8,簡稱NDUFS8,是一個細胞核基因體組所表現的粒線體酵素複合體I的核心蛋白,其含有兩個[4Fe-4S]鐵硫中心,在電子傳遞鏈中扮演重要角色。 NDUFS8突變已知會造成Leigh症候群,並且引起粒線體酵素複合體I的缺失。在這個研究中,主要是利用核糖核酸干擾(RNAi)技術抑制T-REx293細胞中NDUFS8基因的表現,藉此來探討NDUFS8的功能。實驗結果顯示抑制NDUFS8會使細胞生長遲緩、耗氧能力下降、增加活性氧 (ROS) 的產生。利用高解析度透明非變性聚丙烯醯胺凝膠電泳 (HrCNE) 檢測粒線體酵素複合體I的完整性顯示抑制NDUFS8的表現不會影響粒線體酵素複合體I的組成,但減弱其氧化NADH的活性。在NDUFS8受抑制的細胞中表現NDUFS8可改善細胞耗氧能力及粒線體酵素複合體I氧化NADH的活性。另外,各種NDUFS8刪除及與綠螢光蛋白(EGFP)融合的載體被建構來探尋NDUFS8的粒線體標的訊號。實驗結果顯示NDUFS8的胺端18個胺基酸長的片段即擁有將綠螢光蛋白(EGFP)送入粒線體的能力,這比MitoprotII軟體所預測的34個胺基酸還要短。有趣的是,胺端被刪除的NDUFS8蛋白意外的進入細胞核內的特定區域,推測可能有細胞核標的訊號潛藏在NDUFS8序列中。這個研究顯示NDUFS8在粒線體酵素複合體I的活性上扮演重要的角色,而NDUFS8的粒線體標的訊號存在與否,將會決定蛋白在細胞內的位置是在粒線體或細胞核。


    Oxidative phosphorylation system in mammalian cells contains five enzyme complexes. Among them, mitochondrial complex I is the biggest and the most complicated, with many undefined subunits and has no resolved complete structure. Mammalian mitochondrial complex I comprises of forty-five subunits, and seven of them are encoded by the mitochondrial genome. The remaining subunits are encoded by the nuclear genome and imported into mitochondria to perform their functions. NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) is one of the nuclear-encoded mitochondrial core proteins of complex I. It contains two tetranuclear iron-sulfur clusters and plays an important role in electron transport. Mutations on NDUFS8 have been found to cause Leigh syndrome with mitochondrial complex I deficiency. In this study, RNA interference technique was used to knock down the NDUFS8 expression in T-REx293 cells to investigate the function of NDUFS8. Experimental results demonstrated that reducing expression of NDUFS8 would retard the cellular growth rate, slow down the oxygen consumption efficiency and increase the production of reactive oxygen species (ROS). Using high resolution clear native gel electrophoresis (HrCNE) for investigating the integrity of mitochondrial complex I revealed that knockdown of NDUFS8 would not affect the assembly of mitochondrial complex I but reduce its NADH oxidation activities. Restoration of NDUFS8 in a suppressed cell line improved the ability of oxygen consumption and NADH oxidation of complex I. In addition, various deletion and fusion constructs of NDUFS8 were generated to characterize the mitochondrial targeting sequence of this protein. The results revealed that the N-terminal fragment of 18 residues possessed the ability to import EGFP into mitochondria, which is shorter than the prediction of 34 amino acid residues proposed by MitoprotII program. Interestingly, there was also an unexpected result that all of the N-terminal deletion constructs of NDUFS8 protein were located in a specific region of nuclei. It was speculated that there is a nuclear localization signal hiding in NDUFS8 sequence. This study demonstrated that NDUFS8 play an essential role in complex I activity, and the mitochondrial targeting sequence of NDUFS8 existing or not will determine the subcellular localization in mitochondria or in nuclei.

    中文摘要 i Abstract ii Abbreviations vii Introduction 1 Materials and methods 16 Results 24 A. The functional study of NDUFS8 24 1. Reduced and reconstituted expression of NDUFS8 in T-REx293 cells 24 2. Growth capability was diminished in NDUFS8 suppression cells and NDUFS8 rescue cells 25 3. Oxygen consumption rate of respiratory chain declined in NDUFS8 suppression cells and recovered in NDUFS8 rescue cells 26 4. Reactive oxidative species generation was promoted in NDUFS8 suppression cells and NDUFS8 rescue cells 26 5. NADH oxidation activity of mitochondrial complex I was affected by NDUFS8 kncodown but complex I assembly was not 27 B. Characterization of mitochondrial targeting sequence of NDUFS8 29 1. Mapping mitochondrial targeting sequence of NDUFS8 by fused with EGFP 29 2. Mapping mitochondrial targeting sequence by N-terminal truncated NDUFS8 30 3. Mapping the nuclear localization signal in the N-terminal truncated NDUFS8 fragment 31 Discussion 33 A. The functional study of NDUFS8 33 B. Characterization of mitochondrial targeting sequence of NDUFS8 36 Tables 40 Figures 43 Figure 1. Mutiple sequence alignment of the complex I NDUFS8 subunit. 43 Figure 2. The knockdown efficiency of NDUFS8 RNAi. 45 Figure 3. Growth curves of T-REx293, shRNA-A4, shRNA-B3 shRNA-C3 and shRNA-C3-Rescue cells in glucose-containing DMEM (A) and in galactose-containing DMEM (B). 46 Figure 4. Oxygen consumption measurement in T-REx293, shRNA-A4, shRNA-B3, shRNA-C3 and shRNA-C3-Rescue cells by Mitocell S200 micro respirametry system. 47 Figure 5. ROS generation assay detecting H2O2 level in T-REx293, shRNA-A4, shRNA-B3, shRNA-C3 and shRNA-C3-Rescue cells by FACScan flow cytometer. 48 Figure 6. Mitochondrial complex I assembly and in-gel catalytic assay in T-REx293, shRNA-A4, shRNA-B3 shRNA-C3 and shRNA-C3-Rescue cells by HrCNE. 50 Figure 7. Characterization of the mitochondrial targeting sequence of NDUFS8 by various N-terminal fragments fused with EGFP. 53 Figure 8. Characterization of mitochondrial targeting sequence of NDUFS8 by different length of N-terminal deletion constructs tagged with c-myc. 55 Figure 9. Mapping the nuclear localization signal hiding in NDUFS8 sequence by different segment of NDUFS8 combined with LacZ. 56 References 57 Appendixes 63

    1. Yamada, Y. and H. Harashima, Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Advanced Drug Delivery Reviews, 2008. 60(13-14): p. 1439-1462.
    2. Reichert, A.S. and W. Neupert, Mitochondriomics or what makes us breathe. Trends in Genetics, 2004. 20(11): p. 555-562.
    3. Tuppen, H.A.L., E.L. Blakely, D.M. Turnbull, and R.W. Taylor, Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010. 1797(2): p. 113-128.
    4. Lazarou, M., D.R. Thorburn, M.T. Ryan, and M. McKenzie, Assembly of mitochondrial complex I and defects in disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2009. 1793(1): p. 78-88.
    5. Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nat Rev Genet, 2001. 2(5): p. 342-352.
    6. Dudkina, N., S. Sunderhaus, E. Boekema, and H.-P. Braun, The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. Journal of Bioenergetics and Biomembranes, 2008. 40(5): p. 419-424.
    7. Shoubridge, E.A., Nuclear genetic defects of oxidative phosphorylation. Hum. Mol. Genet., 2001. 10(20): p. 2277-2284.
    8. D’Souza, G., S. Boddapati, and V. Weissig, Gene Therapy of the Other Genome: The Challenges of Treating Mitochondrial DNA Defects. Pharmaceutical Research, 2007. 24(2): p. 228-238.
    9. Montoya, J., E. López-Gallardo, M.D. Herrero-Martín, Í. Martínez-Romero, A. Gómez-Durán, D. Pacheu, M. Carreras, C. Díez-Sánchez, M.J. López-Pérez, and E. Ruiz-Pesini, Diseases of the Human Mitochondrial Oxidative Phosphorylation System. Inherited Neuromuscular Diseases, 2009. 652: p. 47-67.
    10. Andersson, G.E., O. Karlberg, B. Canbäck, and C.G. Kurland, On the origin of mitochondria: a genomics perspective. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2003. 358(1429): p. 165-179.
    11. Burger, G., M.W. Gray, and B. Franz Lang, Mitochondrial genomes: anything goes. Trends in Genetics, 2003. 19: p. 709-716.
    12. Mokranjac, D. and W. Neupert, Protein import into mitochondria. Biochem. Soc. Trans., 2005. 33(Pt 5): p. 1019-1023.
    13. Roise, D. and G. Schatz, Mitochondrial presequences. Journal of Biological Chemistry, 1988. 263(10): p. 4509-4511.
    14. Gakh, O., P. Cavadini, and G. Isaya, Mitochondrial processing peptidases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2002. 1592(1): p. 63-77.
    15. Gavel, Y. and G. von Heijne, Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng., 1990. 4(1): p. 33-37.
    16. Carroll, J., I.M. Fearnley, J.M. Skehel, R.J. Shannon, J. Hirst, and J.E. Walker, Bovine Complex I Is a Complex of 45 Different Subunits. Journal of Biological Chemistry, 2006. 281(43): p. 32724-32727.
    17. Brandt, U., Energy Converting NADH: Quinone Oxidoreductase (Complex I). Annual Review of Biochemistry, 2006. 75(1): p. 69-92.
    18. Janssen, R., L. Nijtmans, L. Heuvel, and J. Smeitink, Mitochondrial complex I: Structure, function and pathology. Journal of Inherited Metabolic Disease, 2006. 29(4): p. 499-515.
    19. Sazanov, L.A. and P. Hinchliffe, Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus. Science, 2006. 311(5766): p. 1430-1436.
    20. Hinchliffe, P. and L.A. Sazanov, Organization of Iron-Sulfur Clusters in Respiratory Complex I. Science, 2005. 309(5735): p. 771-774.
    21. Remacle, C., M. Barbieri, P. Cardol, and P. Hamel, Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Molecular Genetics and Genomics, 2008. 280(2): p. 93-110.
    22. Ohnishi, T., Iron-sulfur clusters/semiquinones in Complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1998. 1364(2): p. 186-206.
    23. de Sury, R., P. Martinez, V. Procaccio, J. Lunardi, and J.-P. Issartel, Genomic structure of the human NDUFS8 gene coding for the iron-sulfur TYKY subunit of the mitochondrial NADH:ubiquinone oxidoreductase. Gene, 1998. 215(1): p. 1-10.
    24. Procaccio, V., D. Depetris, P. Soularue, M.-G. Mattei, J. Lunardi, and J.-P. Issartel, cDNA sequence and chromosomal localization of the NDUFS8 human gene coding for the 23 kDa subunit of the mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1997. 1351(1-2): p. 37-41.
    25. Djafarzadeh, R., S. Kerscher, K. Zwicker, M. Radermacher, M. Lindahl, H. Schägger, and U. Brandt, Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2000. 1459(1): p. 230-238.
    26. Loeffen, J., J. Smeitink, R. Triepels, R. Smeets, M. Schuelke, R. Sengers, F. Trijbels, B. Hamel, R. Mullaart, and L. van den Heuvel, The First Nuclear-Encoded Complex I Mutation in a Patient with Leigh Syndrome. The American Journal of Human Genetics, 1998. 63(6): p. 1598-1608.
    27. Procaccio, V. and D.C. Wallace, Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology, 2004. 62(10): p. 1899-1901.
    28. Hinttala, R., J. Uusimaa, A. Remes, H. Rantala, I. Hassinen, and K. Majamaa, Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. Journal of Molecular Medicine, 2005. 83(10): p. 786-794.
    29. Dupuis, A., M. Chevallet, E. Darrouzet, H. Duborjal, J. Lunardi, and J.P. Issartel, The Complex I from Rhodobacter capsulatus. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1998. 1364(2): p. 147-165.
    30. Chevallet, M., A. Dupuis, J. Lunardi, R. Belzen, S.P.J. Albracht, and J.-P. Issartel, The NuoI Subunit of the Rhodobacter Capsulatus Respiratory Complex I (Equivalent to the Bovine TYKY Subunit) is Required for Proper Assembly of the Membraneous and Peripheral Domains of the Enzyme. European Journal of Biochemistry, 1997. 250(2): p. 451-458.
    31. Chevallet, M., A. Dupuis, J.-P. Issartel, J. Lunardi, R. van Belzen, and S.P.J. Albracht, Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (Complex I) from Rhodobacter capsulatus. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2003. 1557: p. 51-66.
    32. Flemming, D., A. Schlitt, V. Spehr, T. Bischof, and T. Friedrich, Iron-Sulfur Cluster N2 of the Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I) Is Located on Subunit NuoB. Journal of Biological Chemistry, 2003. 278(48): p. 47602-47609.
    33. Yano, T., S. Magnitsky, V.D. Sled’, T. Ohnishi, and T. Yagi, Characterization of the Putative 2×[4Fe-4S]-binding NQO9 Subunit of the Proton-translocating NADH-Quinone Oxidoreductase (NDH-1) of Paracoccus denitrificans. Journal of Biological Chemistry, 1999. 274(40): p. 28598-28605.
    34. Yano, T. and T. Yagi, H+-translocating NADH-Quinone Oxidoreductase (NDH-1) of Paracoccus denitrificans. Journal of Biological Chemistry, 1999. 274(40): p. 28606-28611.
    35. Kao, M.-C., A. Matsuno-Yagi, and T. Yagi, Subunit Proximity in the H+-Translocating NADH-Quinone Oxidoreductase Probed by Zero-Length Cross-Linking. Biochemistry, 2004. 43(12): p. 3750-3755.
    36. Yano, T., S.S. Chu, V.D. Sled', T. Ohnishi, and T. Yagi, The Proton-translocating NADH-Quinone Oxidoreductase (NDH-1) of Thermophilic Bacterium Thermus thermophilus HB-8. Journal of Biological Chemistry, 1997. 272(7): p. 4201-4211.
    37. Efremov, R.G., R. Baradaran, and L.A. Sazanov, The architecture of respiratory complex I. Nature, 2010. 465(7297): p. 441-445.
    38. Duarte, M., U. Schulte, and A. Videira, Identification of the TYKY homologous subunit of complex I from Neurospora crassa. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1997. 1322(2-3): p. 237-241.
    39. Dupuis A, S.J., Walker JE., A homologue of a nuclear-coded iron-sulfur protein subunit of bovine mitochondrial complex I is encoded in chloroplast genomes. Biochemistry., 1991. 30(11): p. 2954-60.
    40. Duarte, M. and A. Videira, Respiratory Chain Complex I Is Essential for Sexual Development in Neurospora and Binding of Iron Sulfur Clusters Are Required for Enzyme Assembly. Genetics, 2000. 156(2): p. 607-615.
    41. Kerscher, S., S. Dröse, K. Zwicker, V. Zickermann, and U. Brandt, Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2002. 1555(1-3): p. 83-91.
    42. Abdrakhmanova, A., V. Zickermann, M. Bostina, M. Radermacher, H. Schägger, S. Kerscher, and U. Brandt, Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004. 1658(1-2): p. 148-156.
    43. Ahlers, P.M., A. Garofano, S.J. Kerscher, and U. Brandt, Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2000. 1459(2-3): p. 258-265.
    44. Duarte, M., U. Schulte, A.V. Ushakova, and A. Videira, Neurospora Strains Harboring Mitochondrial Disease-Associated Mutations in Iron-Sulfur Subunits of Complex I. Genetics, 2005. 171(1): p. 91-99.
    45. Rasmussen, T., D. Scheide, B. Brors, L. Kintscher, H. Weiss, and T. Friedrich, Identification of Two Tetranuclear FeS Clusters on the Ferredoxin-Type Subunit of NADH:Ubiquinone Oxidoreductase (Complex I). Biochemistry, 2001. 40(20): p. 6124-6131.
    46. KILBURN, D.G., M.D. LILLY, and F.C. WEBB, The Energetics of Mammalian Cell Growth. J Cell Sci, 1969. 4(3): p. 645-654.
    47. Robinson, B.H., [39] Use of fibroblast and lymphoblast cultures for detection of respiratory chain defects. Methods in Enzymology, 1996. Volume 264: p. 454-464.
    48. Li, Y., J.-S. Park, J.-H. Deng, and Y. Bai, Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. Journal of Bioenergetics and Biomembranes, 2006. 38(5): p. 283-291.
    49. Hofhaus, G., R.M. Shakeley, and G. Attardi, [41] Use of polarography to detect respiration defects in cell cultures. Methods in Enzymology, 1996. Volume 264: p. 476-483.
    50. Barrientos, A., In vivo and in organello assessment of OXPHOS activities. Methods, 2002. 26(4): p. 307-316.
    51. Johannsen, D.L. and E. Ravussin, The role of mitochondria in health and disease. Current Opinion in Pharmacology, 2009. 9(6): p. 780-786.
    52. Kowaltowski, A.J., N.C. de Souza-Pinto, R.F. Castilho, and A.E. Vercesi, Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 2009. 47(4): p. 333-343.
    53. Lambert, A.J. and M.D. Brand, Reactive Oxygen Species Production by Mitochondria. 2009. 554: p. 165-181.
    54. Schägger, H. and G. von Jagow, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry, 1991. 199(2): p. 223-231.
    55. Wittig, I., M. Karas, and H. Schägger, High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes. Molecular & Cellular Proteomics, 2007. 6(7): p. 1215-1225.
    56. Carroll, J., I.M. Fearnley, R.J. Shannon, J. Hirst, and J.E. Walker, Analysis of the Subunit Composition of Complex I from Bovine Heart Mitochondria. Molecular & Cellular Proteomics, 2003. 2(2): p. 117-126.
    57. Lange, A., L.M. McLane, R.E. Mills, S.E. Devine, and A.H. Corbett, Expanding the Definition of the Classical Bipartite Nuclear Localization Signal. Traffic, 2010. 11(3): p. 311-323.
    58. Schmidt-Zachmann, M. and E. Nigg, Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci, 1993. 105(3): p. 799-806.
    59. Fagotto, F., U. Glück, and B.M. Gumbiner, Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Current Biology, 1998. 8(4): p. 181-190.
    60. Mueller, J.C., C. Andreoli, H. Prokisch, and T. Meitinger, Mechanisms for multiple intracellular localization of human mitochondrial proteins. Mitochondrion, 2004. 3(6): p. 315-325.
    61. Huq, M.D.M. and L.-N. Wei, Post-translational Modification of Nuclear Co-repressor Receptor-interacting Protein 140 by Acetylation. Molecular & Cellular Proteomics, 2005. 4(7): p. 975-983.
    62. Sehat, B., A. Tofigh, Y. Lin, E. Trocme, U. Liljedahl, J. Lagergren, and O. Larsson, SUMOylation Mediates the Nuclear Translocation and Signaling of the IGF-1 Receptor. Sci. Signal., 2010. 3(108): p. ra10-.
    63. Spector, D.L., Nuclear domains. J Cell Sci, 2001. 114(16): p. 2891-2893.
    64. Kaiser, T.E., R.V. Intine, and M. Dundr, De Novo Formation of a Subnuclear Body. Science, 2008. 322(5908): p. 1713-1717.
    65. Platani, M., I. Goldberg, J.R. Swedlow, and A.I. Lamond, In Vivo Analysis of Cajal Body Movement, Separation, and Joining in Live Human Cells. The Journal of Cell Biology, 2000. 151(7): p. 1561-1574.
    66. Sirri, V., S. Urcuqui-Inchima, P. Roussel, and D. Hernandez-Verdun, Nucleolus: the fascinating nuclear body. Histochemistry and Cell Biology, 2008. 129(1): p. 13-31.
    67. Morris, G.E., The Cajal body. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008. 1783(11): p. 2108-2115.
    68. Lam, Y.W., L. Trinkle-Mulcahy, and A.I. Lamond, The nucleolus. J Cell Sci, 2005. 118(7): p. 1335-1337.
    69. Lo, S.J., C.C. Lee, and H.J. Lai, The nucleolus: reviewing oldies to have new understandings. Cell Res, 2006. 16(6): p. 530-538.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE