研究生: |
周哲民 Chou, Che-Min |
---|---|
論文名稱: |
對流式漸擴微流道沸騰熱傳散熱技術應用於高效率電子元件之研究 |
指導教授: |
潘欽
Pan, Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 沸騰 、微流道 |
外文關鍵詞: | microchannel, boiling |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,電子元件微小化技術不斷進步,使得在相同面積下容納更多的電子元件,因此,單位面積下所產生的熱劇增,這將造成電子產品的散熱問題。本研究即針對雙相移熱的方式,並利用微機電技術設計多平行漸擴微通道(microchannel)使用介電液FC-72(沸點為56℃)於微流道沸騰雙相流散熱技術之研究。
本研究的目的在改善多平行流道入口的設計,並探討漸擴角於沸騰下的效應,進一步提昇多平行漸擴微流道之熱傳能力。研究發現,樹枝狀結構的入口設計能有效的提供流道與流道間均勻的流量分佈,進而提昇最大傳熱量。本研究探討333、666及999 kg/m2s三種以平均流道截面積為基準之質量通率效應。在質量通率為999 kg/m2s的熱傳能力提昇最佳,能提高約35%的臨界熱通率。此外,研究也發現流道漸擴角越大,較能有效的抑止逆流現象的發生;因此,在高質量通率時有較佳臨界熱通率,而在低質量通率時,角度效應對熱傳所造成的影響並不顯著。
本研究證實,多平行微流道輔以適當的入口與漸擴角設計,可具有穩定的高移熱能力。若進一步加深流道,並利用雙入口對流之設計或文獻中之輻射型設計,將可利用熱傳面積倍增的效果滿足現今電子元件高移熱能力的需求。
1.Y. Joshi and X. Wei, Micro and meso scale compact heat exchangers in electronics thermal management–a review. In Proceedings of the 5th International Conference on Enhanced, Compact and Ultra Compact Heat Exchangers, Hoboken, NJ, USA, 162–179(2005).
2.I. Mudawar, D. Bharathan, K. Kelly and S. Narumanchi, Two Phase Spray Cooling of Hybrid Vehicle Electronics, Proceedings of ITherm 2008, Orlando, FL.
3.D. B. Tuckerman and R. F. W. Pease, High Performance heat sinking for VLSI, IEEE Electronic Device Letters, EDL-2(1981)126-129.
4.http://www.me.gatech.edu/yogendra.joshi/METTL/ (Microelectronics and Emerging Technologies Thermal Laboratory).
5.T. Henning, J.J. Brandner, K. Schubert, M. Lorenzini and G.-L. Morini, Low-Frequency Instabilities in the Operation of Metallic Multi-Microchannel Evaporators. Heat Transfer Engineering 28 834-841(2007).
6.S. Maikowske, J.J. Brandner and R. Lange , A novel device for the optical investigation of phase transition in micro channel array evaporators, Applied Thermal Engineering, 1-5(2010).
7.C. T. Lu and C.Pan, Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels Proc. 13th Int. Heat Transfer Conf. (Sydney, Australia, 2006).
8.S.G. Kandlikar, Heat transfer mechanisms during flow boiling in microchannels, ASME J. Heat Transfer 126 8–16(2004).
9.H. J. Lee, D.Y. Liu, Shi-chune Yao, Flow instability of evaporative micro-channels, Int. J. Heat and Mass Transfer, Vol.53, pp.1740–1749(2010).
10.K.R. Samant and T.W. Simon, Heat transfer from a small heated region to R-113 and FC-72, Trans. ASME J. Heat Transfer, 111 1053–1059(1989).
11.T. Y. Lee and T. W. Simon, "High-Heat-Flux Forced Convection Boiling from Small Regions", Heat Transfer In Electronics, ASME HTD-Vol.111, pp.7-16(1989).
12.S. M. You, A. Bar-Cohen and T.W. Simon, Boiling Incipience and Boiling Heat Transfer of Highly-Wetting Dielectric Fluids from Electronic Materials, InterSociety Conference on Thermal Phenomena(1990).
13.P. J. Marto and V. J. Lepere, Pool boiling heat transfer from enhanced surfaces to dielectric fluids, ASME J. Heat Transfer, vol. 104, pp. 292-297(1982).
14.C.O. Gersey and I. Mudawar, Effects of orientation on critical heat flux from chip arrays during flow boiling, Trans. ASME J. Electr. Pack. 114 290–299(1992).
15.T.C. Willingham and I. Mudawar, Forced-convection boiling and critical heat flux from a linear array of discrete heat sources, Int. J. Heat Mass Transfer 35 2879–2890(1992).
16.T.J. Heindel, S. Ramadhyani and F.P. Incropera, Liquid immersion cooling of a longitudinal array of discrete heat sources in protruding substrates: II – forced convection boiling, Trans. ASME J. Electr. Pack. 114 63–70(1992).
17.P. S. Wu and T. W. Simon, Effects of Dissolved Gases on Subcooled Flow Boiling from Small Heated Regions with and without Streamwise Concave Curvature, Thermal Phenomena in Electronic Systems, 1994.I-THERM IV. Concurrent Engineering and Thermal Phenomena., InterSociety Conference on,pp.22-31(1994).
18.C.P. Tso, K.W. Tou and G.P. Xu, Flow boiling critical heat flux of FC-72 from flush-mounted and protruded simulated chips in a vertical rectangular channel, Int. J. Multiphase Flow 26 351–365(2000).
19.Y. Ma and J.N. Chung, A study of bubble dynamics in reduced gravity forced-convection boiling, Int. J. Heat Mass Transfer 44 399–415(2001).
20.R. Situ, Y. Mi, M. Ishii and M. Mori, Photographic study of bubble behavior in forced convection subcooled boiling, Int. J. Heat Mass Transfer 47 3659–3667(2004).
21.H. Zhang , I. Mudawar and M. M. Hasan, Experimental assessment of the effects of body force , surface tension force and inertia on flow boiling CHF, Int. J. Heat and Mass Transfer 45 ,PP. 4079-4095(2002).
22.H. Honda, H. Takamastu. and J.J. Wei, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, Trans. ASME J. Heat Transfer 124 383–389(2002).
23.M. Yuan, J. Wei., Y. Xue and J. Fang., Subcooled flow boiling heat transfer of FC-72 from silicon chips fabricated with micro-pin-fins, Int. J. Thermal Sciences 4 1416–1422 (2009).
24.Y.M. Lie, J.H. Ke, W.R. Chang, T.C. Cheng and T.F. Lin, Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip, Int. J. Heat and Mass Transfer 50 3862–3876(2007).
25.W. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, Int. J. Heat Mass Transfer 45 2549–2565(2002).
26.G. Hetsroni, A. Mosyak, E. Pogrebnyak and Z. Segal, Periodic boiling in parallel micro-channels at low vapor quality, Int. J. Multiphase Flow 31 371-392(2006).
27.G. Wang, P. Cheng and H. Wu, Unstable and stable flow boiling in parallel microchannels and in a single microchannel, Int. J. Heat and Mass Transfer 50 4297–4310(2007).
28.P. C. Lee and C.Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, J. Micromech. Microeng. 18 025005 (2008).
29.R. Chein and J. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int. J. Thermal Sciences, 48 1627–1638(2009).
30.A. Y. Alharbi, D. V. Pence and R. N. Cullion, Thermal Characteristics of Microscale Fractal-Like Branching Channels, J. Heat Transfer 126 5 744–752, (2004).
31.Xiang-Qi Wang, A. S. Mujumdar and C. Yap, Effect of bifurcation angle in tree-shaped microchannel networks, J. Applied Physics 102, 073530 (2007).
32.D. Haller, P. Woias and N. Kockmann, Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions, Int. J. Heat and Mass Transfer 52 2678–2689(2009).
33.Y. Kawamura, N. Ogura, T. Yamamoto and A. Igarashi, Aminiaturized methanol reformer with Si-base micro-reactor for a small PEMFC, Chemical Engineering Science, 161 1092-1101 (2006).
34.Fluorinert™ Electronic Liquid FC-72 Product information, 3M Center.
35.P. F. Incripera and D.V. Dewitt, Fundamentals of heat and mass transfer, John Wiley and Sons, Ing., New York(1996).
36.J. J. Hwang, F. G. Tseng and C. Pan, Ethanol-CO2 two phase flow in diverging and converging microchannels, Int. J. Multiphase, 31 548-570 (2005).
37.M. B. Bowers, and I. Mudawar, High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sink, Int. J. Heat Mass Transfer, 37 321-332(1994).
38. L. Wojtan, R. Revellin and J. R. Thome, Investigation of Saturated Flow Boiling of Water in a Vertical Small Diameter Tube, Exp. Therm. Fluid Sci, 30 765-774(2006).
39.W. Qu and I. Mudawar, Measurement and Correlation of Critical Heat Flux in Two-phase Micro-channel Heat Sinks, Int. J. Heat Mass Transfer, 47 2045-2059(2004).
40.A. Koşar, C. J. Kuo, and Y. Peles, Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities, AMSE J. Heat Transfer, 48 4867-4886(2005).
41.http://www.3m.com/index.html?change=true (3M Company)
42.http://www51.honeywell.com/honeywell/ (Honeywell Company)